×

Generalizing the Kreĭn-Rutman theorem, measures of noncompactness and the fixed point index. (English) Zbl 1206.47044

Summary: If \(L : Y \rightarrow Y\) is a bounded linear map on a Banach space \(Y\), the “radius of the essential spectrum” or “essential spectral radius” \(\rho (L)\) of \(L\) is well-defined and there are well-known formulas for \(\rho (L)\) in terms of measures of noncompactness. Now let \(C \subset D\) be complete cones in a normed linear space (\(X, \|\cdot\|\)) and \(f : C \rightarrow C\) a continuous map which is homogeneous of degree one and preserves the partial ordering induced by \(D\). We prove (see Section 2) that various obvious analogs of the formulas for the essential spectral radius for the case \(f : C \rightarrow C\) have serious defects, even when \(f\) is linear on \(C\). We propose (see (3.5)) a definition for \(\rho C (f)\), the “cone essential spectral radius of \(f\),” which avoids these difficulties. If \({\tilde r}_{C}(f)\) denotes the (Bonsall) cone spectral radius of \(f\), we conjecture (see Conjecture 4.1) that if \(\rho_{C}(f) < {\tilde r}_{C}(f)\), then there exists \(u \in C\setminus \{0\}\) with \(f(u) = ru\), where \(r := r_C (f)\). If \(f\) satisfies certain additional conditions (for example, if \(f\) is a compact perturbation of a map which is linear on \(C\)), we obtain the conclusion of the conjecture; but, in general, we observe (Remark 4.7) that the conjecture is intimately related to old and difficult conjectures in asymptotic fixed point theory. In Section 5, we briefly discuss extensions of generalized max-plus operators which were our original motivation and for which Conjecture 4.1 is already nontrivial.

MSC:

47H07 Monotone and positive operators on ordered Banach spaces or other ordered topological vector spaces
47H08 Measures of noncompactness and condensing mappings, \(K\)-set contractions, etc.
47H10 Fixed-point theorems
47J10 Nonlinear spectral theory, nonlinear eigenvalue problems
46B40 Ordered normed spaces
47A10 Spectrum, resolvent
47B65 Positive linear operators and order-bounded operators
Full Text: DOI

References:

[1] Ayerbe Toledano J.M., Domínguez Benavides T., López Acedo G.: Measures of Noncompactness in Metric Fixed Point Theory. Birkhäuser, Basel (1997) · Zbl 0885.47021
[2] Banaś J., Goebel K.: Measures of Noncompactness in Banach Spaces. Dekker, New York (1980)
[3] Bonsall F.F.: Linear operators in complete positive cones. Proc. London Math. Soc. 8, 53–75 (1958) · Zbl 0097.09803 · doi:10.1112/plms/s3-8.1.53
[4] Bonsall F.F.: Lectures on Some Fixed Point Theorems of Functional Analysis. Tata Inst. Fund. Res., Bombay (1962) · Zbl 0142.10105
[5] Browder F.E.: On the spectral theory of elliptic differential operators. Math. Ann. 142, 22–130 (1961) · Zbl 0104.07502 · doi:10.1007/BF01343363
[6] Brown R.F.: The Lefschetz Fixed Point Theorem. Scott, Foresman and Co., Glenview, IL (1971) · Zbl 0216.19601
[7] Darbo G.: Punti uniti in trasformazioni a condominio non compatto. Rend. Sem. Mat. Univ. Padova 24, 84–92 (1955) · Zbl 0064.35704
[8] Deimling K.: Nonlinear Functional Analysis. Springer, Berlin (1985) · Zbl 0559.47040
[9] Dold A.: Lectures on Algebraic Topology. Springer, New York (1972) · Zbl 0234.55001
[10] Edmunds D.E., Potter A.J.B., Stuart C.A.: Noncompact positive operators. Proc. Roy. Soc. London 328, 67–81 (1972) · Zbl 0232.47035 · doi:10.1098/rspa.1972.0069
[11] Furi M., Vignoli A.: On a property of the unit sphere in a linear normed space. Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 18, 333–334 (1970) · Zbl 0194.43501
[12] Granas A., Dugundji J.: Fixed Point Theory. Springer, New York (2003) · Zbl 1025.47002
[13] Guo D., Lakshmikantham V.: Nonlinear Problems in Abstract Cones. Academic Press, Boston (1988) · Zbl 0661.47045
[14] Kato T.: Perturbation Theory for Linear Operators. Springer, New York (1966) · Zbl 0148.12601
[15] M. G. Kreiĭn and M. A. Rutman, Linear operators leaving invariant a cone in a Banach space. Uspekhi Mat. Nauk 3 (1948), no. 1(23), 3–95 (in Russian); English transl.: Amer. Math. Soc. Transl. 26 (1950). · Zbl 0030.12902
[16] Kuratowski K.: Sur les espaces complets. Fund. Math. 15, 301–309 (1930) · JFM 56.1124.04
[17] Lins B., Nussbaum R.D.: Denjoy–Wolff theorems, Hilbert metric nonexpansive maps and reproduction-decimation operators. J. Funct. Anal. 254, 203–245 (2008) · Zbl 1143.47036 · doi:10.1016/j.jfa.2008.02.001
[18] Mallet-Paret J., Nussbaum R.D.: Eigenvalues for a class of homogeneous cone maps arising from max-plus operators. Discrete Contin. Dynam. Systems 8, 519–562 (2002) · Zbl 1007.47031 · doi:10.3934/dcds.2002.8.519
[19] Mallet-Paret J., Nussbaum R.D.: Asymptotic fixed point theorems and the beer barrel theorem. J. Fixed Point Theory Appl. 4, 203–245 (2008) · Zbl 1189.47056 · doi:10.1007/s11784-008-0095-0
[20] J. Mallet-Paret and R. D. Nussbaum, Inequivalent measures of noncompactness and the radius of the essential spectrum. Proc. Amer. Math. Soc., to appear. · Zbl 1219.47073
[21] J. Mallet-Paret and R. D. Nussbaum, Inequivalent measures of noncompactness. Submitted. · Zbl 1234.47041
[22] Mönch H.: Boundary value problems for nonlinear ordinary differential equations of second order. Nonlinear Anal. 4, 985–999 (1980) · Zbl 0462.34041 · doi:10.1016/0362-546X(80)90010-3
[23] J. R. Munkres, Topology. 2nd ed., Prentice Hall, 2000.
[24] Nussbaum R.D.: The radius of the essential spectrum. Duke Math. J. 37, 473–478 (1970) · Zbl 0216.41602 · doi:10.1215/S0012-7094-70-03759-2
[25] Nussbaum R.D.: The fixed point index for local condensing maps. Ann. Mat. Pura Appl. 89, 217–258 (1971) · Zbl 0226.47031 · doi:10.1007/BF02414948
[26] Nussbaum R.D.: Some asymptotic fixed point theorems. Trans. Amer. Math. Soc. 171, 349–375 (1972) · Zbl 0256.47040 · doi:10.1090/S0002-9947-1972-0310719-6
[27] Nussbaum R.D.: Generalizing the fixed point index. Math. Ann. 228, 259–278 (1977) · Zbl 0365.58005 · doi:10.1007/BF01420294
[28] R. D. Nussbaum, Integral equations from the theory of epidemics. In: Nonlinear Systems and Applications, V. Lakshmikantham (ed.), Academic Press, New York, 1977, 235–255.
[29] R. D. Nussbaum, Eigenvalues of nonlinear, positive operators and the linear Krein–Rutman theorem. In: Fixed Point Theory, Lecture Notes in Math. 886, Springer, Berlin, 1981, 309–331.
[30] R. D. Nussbaum, The Fixed Point Index and Some Applications. Sém. Math. Sup. 94, Presses Univ. de Montréal, Montréal, 1985. · Zbl 0565.47040
[31] Nussbaum R.D.: Periodic points of positive linear operators and Perron–Frobenius operators. Integral Equations Operator Theory 39, 41–97 (2001) · Zbl 0987.47026 · doi:10.1007/BF01192149
[32] R. D. Nussbaum, A. Priyadarshi and S. Verduyn Lunel, Positive operators and Hausdorff dimension of invariant sets. Submitted. · Zbl 1280.37029
[33] Nussbaum R.D., Walsh B.J.: Approximation by polynomials with nonnegative coefficients and the spectral theory of positive operators. Trans. Amer. Math. Soc. 350, 2367–2391 (1998) · Zbl 0898.30030 · doi:10.1090/S0002-9947-98-01998-9
[34] Schaefer H.H.: Halbgeordnete lokalkonvexe Vektorräume. II. Math. Ann. 138, 259–286 (1959) · Zbl 0092.11303 · doi:10.1007/BF01342907
[35] Schaefer H.H., Wolff M.P.: Topological Vector Spaces 2nd ed. Springer, New York (1999) · Zbl 0983.46002
[36] Toland J.: Self-adjoint operators and cones. J. London Math. Soc. 53, 167–183 (1996) · Zbl 0858.47016
[37] Wolf F.: On the essential spectrum of partial differential boundary problems. Comm. Pure Appl. Math. 12, 211–228 (1959) · Zbl 0087.30501 · doi:10.1002/cpa.3160120202
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.