×

Exponential stability of equilibria of differential equations with time-dependent delay and non-Lipschitz nonlinearity. (English) Zbl 1206.34096

The authors discuss exponential stability of equilibria of differential equations of the form
\[ \frac{du(t)}{dt}=F(u(t))+G(u(t-\tau(t))),\quad t\geq t_0, \]
\[ u(t)=\phi(t),\quad t\in[t_0-b,t_0]. \]
where \(t_0\geq 0\) and \(b>0\) are constants, \(F\) and \(G\) are nonlinear partially Lipschitz continuous operators from an open subset \(\Omega\) of \(R^n\), \(u(t)\in\Omega\) for \(t\geq t_0\), the delay function \(\tau(t)\) satisfies \(0\leq\tau(t)\leq b\) for \(t\geq t_0\), and \(\phi(\cdot)\in C([t_0-b, t_0],\Omega)\) is an initial function.
Some examples illustrate that the obtained results are improvement and extension of some existing ones.

MSC:

34K20 Stability theory of functional-differential equations

Software:

reducedLP
Full Text: DOI

References:

[1] Bartholomeus, A. G.; Dambrine, M.; Richard, J. P., Stability of perturbed systems with time-varying delays, Syst. Control Lett., 31, 155-163 (1997) · Zbl 0901.93047
[2] Ding, T. R., Asymptotic behavior of solutions of some delay differential equations, Sci. China Ser. A, 25, 363-371 (1982) · Zbl 0498.34056
[3] Hu, S. H.; Huang, L. H.; Yi, T. S., Convergence of bounded solutions to a class of systems of delay differential equations, Nonlinear Anal. TMA, 61, 543-549 (2005) · Zbl 1075.34078
[4] Linh, N. M.; Phat, V. N., Exponential stability of nonlinear time-varying differential equations and applications, Electron. J. Differential Equations, N-34, 1-14 (2001) · Zbl 0974.34054
[5] Morita, M., Associative memory with nonmonotone dynamics, Neural Netw., 6, 1, 115-126 (1993)
[6] Ni, M. L.; Er, M. J., Stability of linear systems with delayed perturbations: An LMI approach, IEEE Trans. Automat. Control, 49, 108-112 (2002) · Zbl 1368.93604
[7] P. Niamsup, K. Mukdasai, V.N. Phat, Improved exponential stability for time-varying systems with nonlinear delayed perturbations, Appl. Math. Comput. doi:10.1016/j.amc.2008.07.022; P. Niamsup, K. Mukdasai, V.N. Phat, Improved exponential stability for time-varying systems with nonlinear delayed perturbations, Appl. Math. Comput. doi:10.1016/j.amc.2008.07.022 · Zbl 1168.34355
[8] Peng, J. G.; Qiao, H.; Xu, Z. B., A new approach to stability of neural networks with time-varying delays, Neural Netw., 15, 1, 95-103 (2002)
[9] Phat, V. N.; Niamsup, P., Stability of linear time-varying delay systems and applications to control problems, J. Comput. Appl. Math., 194, 343-356 (2006) · Zbl 1161.34353
[10] Phat, V. N., Global stabilization for linear continuous time-varying systems, Appl. Math. Comput., 175, 1730-1743 (2006) · Zbl 1131.93044
[11] Wei, Z.; Huang, L., Asymptotic behavior of solutions of a class of delay differential systems, Appl. Math. Lett. (2008)
[12] Yi, T. S.; Huang, L. H., A generalization of the Bernfeld-Haddock conjecture and its proof, Acta Math. Sinica (Chin. Ser.), 50, 261-270 (2007) · Zbl 1121.34334
[13] Yi, T. S.; Huang, L. H., Asymptotic behavior of solutions for a class of systems of differential equations, Acta Math. Sin. (Engl. Ser.), 23, 1375-1384 (2007) · Zbl 1152.34054
[14] Zevin, A.; Pinsky, M., Exponential stability and solution bounds for systems with bounded nonlinearities, IEEE Trans. Automat. Control, 48, 1799-1804 (2003) · Zbl 1364.93610
[15] Qiao, H.; Peng, J. G.; Xu, Z. B., Nonlinear measures: A new approach to exponential stability analysis for Hopfield-type neural networks, IEEE Trans. Neural Netw., 12, 2, 360-370 (2001)
[16] Hale, J., Theory of Functional Differential Equations (1977), Springer: Springer New York · Zbl 0352.34001
[17] Cronin, J., Fixed Point and Topological Degree in Nonlinear Analysis (1964), American Mathematical Society: American Mathematical Society Providence, RI · Zbl 0117.34803
[18] Driver, R. D., Ordinary and Delay Differential Equations (1977), Springer-Verlage: Springer-Verlage New York · Zbl 0374.34001
[19] Rudin, W., Real and Comples Analysis (1976), Wiley: Wiley New York
[20] Cohen, M.; Grossberg, S., Absolute stability and global pattern formation and parallel memory storage by competitive neural networks, IEEE Trans. Syst. Man Cybern., SMC-13, 815-821 (1983) · Zbl 0553.92009
[21] Zhang, Q.; Wei, X. P.; Xu, J., Global exponential convergence analysis of delayed neural networks with time-varying delays, Phys. Lett. A, 318, 6, 537-544 (2003) · Zbl 1098.82616
[22] Zhang, Q.; Wei, X. P.; Xu, J., Global asymptotic stability analysis of neural networks with time-varying delays, Neural Process. Lett., 21, 1, 61-71 (2005)
[23] Zhang, Q.; Wei, X. P.; Xu, J., Delay-dependent exponential stability of cellular neural networks with time-varying delays, Chaos Solitons Fractals, 23, 4, 1363-1369 (2005) · Zbl 1094.34055
[24] Zhou, D. M.; Cao, J. D., Globally exponential stability conditions for cellular neural networks with time-varying delays, Appl. Math. Comput., 131, 2-3, 487-496 (2002) · Zbl 1034.34093
[25] Chen, A. P.; Cao, J. D.; Huang, L. H., Exponential stability of BAM neural networks with transmission delays, Neurocomputing, 57, 435-454 (2004)
[26] Arik, S.; Orman, Z., Global stability analysis of Cohen-Grossberg neural networks with time varying delays, Phys. Lett. A, 341, 410-421 (2005) · Zbl 1171.37337
[27] Arik, S.; Tavsanoglu, V., Global asymptotic stability analysis of bidirectional associative memory neural networks with constant time delays, Neurocomputing, 68, 161-176 (2005)
[28] Chen, T. P., Global exponential stability of delayed Hopfield neural networks, Neural Netw., 14, 8, 977-980 (2001)
[29] Chen, T. P.; Rong, L. B., Delay-independent stability analysis of Cohen-Grossberg neural networks, Phys. Lett. A, 317, 436-449 (2003) · Zbl 1030.92002
[30] Chen, Z.; Ruan, J., Global stability analysis of impulsive Cohen-Grossberg neural networks with delay, Phys. Lett. A, 345, 101-111 (2005) · Zbl 1345.92012
[31] Hwang, C. C.; Cheng, C. J.; Liao, T. L., Globally exponential stability of generalized Cohen-Grossberg neural networks with delays, Phys. Lett. A, 319, 157-166 (2003) · Zbl 1073.82597
[32] Jiang, H. J.; Cao, J. D.; Teng, Z. D., Dynamics of Cohen-Grossberg neural networks with time-varying delays, Phys. Lett. A, 354, 414-422 (2006)
[33] Liao, X. F.; Li, C. G.; Wong, K., Criteria for exponential stability of Cohen-Grossberg neural networks, Neural Netw., 17, 1401-1414 (2004) · Zbl 1073.68073
[34] Liu, B. W.; Huang, L. H., Existence and exponential stability of almost periodic solutions for Hopfield neural networks with delay, Neurocomputing, 68, 196-207 (2005)
[35] Liu, B. W.; Huang, L. H., Global exponential stability of BAM neural networks with recent-history distributed delays and impulses, Neurocomputing, 69, 2090-2096 (2006)
[36] Liu, Y. G.; You, Z. S.; Cao, L. P., On stability of disturbed Hopfield neural networks with time delays, Neurocomputing, 69, 941-948 (2006)
[37] Lou, X. Y.; Cui, B. T., On the global robust asymptotic stability of BAM neural networks with time-varying delays, Neurocomputing, 70, 273-279 (2006)
[38] Lu, K. N.; Xu, D. Y.; Yang, Z. C., Global attraction and stability for Cohen-Grossberg neural networks with delays, Neural Netw., 19, 1538-1549 (2006) · Zbl 1178.68437
[39] Wan, A. H.; Wang, M. S.; Peng, J. G.; Qiao, H., Exponential stability of Cohen-Grossberg neural networks with a general class of activation functions, Phys. Lett. A, 350, 96-102 (2006) · Zbl 1195.34063
[40] Wan, A. H.; Peng, J. G.; Wang, M. S., Exponential stability of a class of generalized neural networks with time-varying delays, Neurocomputing, 69, 959-963 (2006)
[41] Wan, A. H.; Qiao, H.; Peng, J. G.; Wang, M. S., Delay-independent criteria for exponential stability of generalized Cohen-Grossberg neural networks with discrete delays, Phys. Lett. A, 353, 151-157 (2006) · Zbl 1398.34063
[42] Wan, L.; Sun, J. H., Global asymptotic stability of Cohen-Grossberg neural network with continuously distributed delays, Phys. Lett. A, 342, 331-340 (2005) · Zbl 1222.93200
[43] Wang, L. S.; Xu, D. Y., Stability of Hopfield neural networks with time delays, J. Vib. Control, 8, 1, 13-18 (2002) · Zbl 1012.93054
[44] Wang, L.; Zou, X. F., Exponential stability of Cohen-Grossberg neural networks, Neural Netw., 15, 415-422 (2002)
[45] Wu, W.; Cui, B. T.; Lou, X. Y., Some criteria for asymptotic stability of Cohen-Grossberg neural networks with time-varying delays, Neurocomputing, 70, 1085-1088 (2007)
[46] Xiong, W. J.; Cao, J. D., Global exponential stability of discrete-time Cohen-Grossberg neural networks, Neurocomputing, 64, 433-446 (2005)
[47] Xiong, W. J.; Cao, J. D., Absolutely exponential stability of Cohen-Grossberg neural networks with unbounded delays, Neurocomputing, 68, 1-12 (2005)
[48] Yuan, K.; Cao, J. D.; Deng, J. M., Exponential stability and periodic solutions of fuzzy cellular neural networks with time-varying delays, Neurocomputing, 69, 1619-1627 (2006)
[49] Zhang, J. Y., Global stability analysis in delayed cellular neural networks, Comput. Math. Appl., 45, 10-11, 1707-1720 (2003) · Zbl 1045.37057
[50] Zhang, J. Y.; Suda, Y.; Komine, H., Global exponential stability of Cohen-Grossberg neural networks with variable delays, Phys. Lett. A, 338, 44-50 (2005) · Zbl 1136.34347
[51] Zhao, H. Y., Exponential stability and periodic oscillatory of bi-directional associative memory neural network involving delays, Neurocomputing, 69, 424-448 (2006)
[52] Zhao, H. Y.; Wang, K. L., Dynamical behaviors of Cohen-Grossberg neural networks with delays and reaction-diffusion terms, Neurocomputing, 70, 536-543 (2006)
[53] Huang, C. C.; Huang, L. H., Dynamics of a class of Cohen-Grossberg neural networks with time-varying delays, Nonlinear Anal. TMA, 8, 40-52 (2007) · Zbl 1123.34053
[54] Tits, A. L.; Absil, P. A.; Woessner, W. P., Constraint reduction for linear programs with many inequality constraints, SIAM J. Optim., 17, 1, 119-146 (2006) · Zbl 1112.90049
[55] Cao, J. D.; Wang, J., Absolute exponential stability of recurrent neural networks with Lipschitz-continuous activation functions and time delays, Neural Netw., 17, 379-390 (2004) · Zbl 1074.68049
[56] Casal, A. C., Finite extinction and null controllability via delayed feedback non-local actions, Nonlinear Anal. (2009) · Zbl 1239.93010
[57] Casal, A. C.; Diaz, J. I., On the principle of pseudo-linearized stability: Application to some delayed parabolic equations, Nonlinear Anal., 63, e997-e1007 (2005) · Zbl 1224.35237
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.