×

A numerical method for exact diagonalization of semiconductor quantum dot model. (English) Zbl 1205.82139

Summary: An approach to the exact diagonalization of many-electron Hamiltonian in semiconductor quantum dot (QD) structures is proposed. The QD model is based on 3D finite hard-wall confinement potential and nonparabolic effective-mass approximation (EMA) that render analytical basis functions such as Laguerre polynomials inaccessible for the numerical treatment of this kind of models. In this approach, the many-electron wave function is expanded in a basis of Slater determinants constructed from numerical wave functions of the single-electron Hamiltonian with the nonparabolic EMA which results in a cubic eigenvalue problem from a finite difference discretization. The nonlinear eigenvalue problem is solved by using the Jacobi-Davidson method. The Coulomb matrix elements in the many-electron Hamiltonian are obtained by solving Poisson’s problems via GMRES. Numerical results reveal that a good convergence can be achieved by means of a few single-electron basis states.

MSC:

82D37 Statistical mechanics of semiconductors
81V65 Quantum dots as quasi particles
65F15 Numerical computation of eigenvalues and eigenvectors of matrices
65F10 Iterative numerical methods for linear systems
82-08 Computational methods (statistical mechanics) (MSC2010)
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs

Software:

JDQZ; JDQR

References:

[1] (Bai, Z.; Demmel, J.; Dongarra, J.; Ruhe, A.; van der Vorst, H., Templates for the Solution of Algebraic Eigenvalue Problems: A Practical Guide (2000), SIAM: SIAM Philadelphia) · Zbl 0965.65058
[2] Barker, J. A.; O’Reilly, E. P., Theoretical analysis of electron-hole alignment in InAs-GaAs quantum dots, Phys. Rev. B, 61, 13840-13851 (2000)
[3] Barker, J. A.; Warburton, R. J.; O’Reilly, E. P., Electron and hole wave functions in self-assembled quantum rings, Phys. Rev. B, 69, 035327 (2004)
[4] Barnham, K.; Vvedensky, D., Low-Dimensional Semiconductor Structures: Fundamentals and Device Applications (2008), Cambridge University Press
[5] Barrett, R.; Berry, M.; Chan, T. F.; Demmel, J.; Donato, J.; Dongarra, J.; Eijkhout, V.; Pozo, R.; Romine, C.; Van der Vorst, H., Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods (1994), SIAM: SIAM Philadelphia
[6] Bellucci, D.; Rontani, M.; Troiani, F.; Goldoni, G.; Molinari, E., Competing mechanisms for singlet-triplet transition in artificial molecules, Phys. Rev. B, 69, 201308 (2004)
[7] Bruce, N. A.; Maksym, P. A., Quantum states of interacting electrons in a real quantum dot, Phys. Rev. B, 61, 4718-4726 (2000)
[8] Chakraborty, T.; Pietiläinen, P., Optical signatures of spin-orbit interaction effects in a parabolic quantum dot, Phys. Rev. Lett., 95, 136603 (2005)
[9] Climente, J. I.; Planelles, J.; Movilla, J. L., Magnetization of nanoscopic quantum rings and dots, Phys. Rev. B, 70, 081301 (2004)
[10] de Andrada e. Silva, E. A.; La Rocca, G. C.; Bassani, F., Spin-split subbands and magneto-oscillations in III-V asymmetric heterostructures, Phys. Rev. B, 50, 8523 (1994)
[11] Filikhin, I.; Suslov, V. M.; Vlahovic, B., Modeling of InAs/GaAs quantum ring capacitance spectroscopy in the nonparabolic approximation, Phys. Rev. B, 73, 205332 (2006)
[12] Filippi, C.; Umrigar, C. J.; Taut, M., Comparison of exact and approximate density functionals for an exactly soluble model, J. Chem. Phys., 100, 1290-1296 (1994)
[13] Garcia, C. P.; Pellegrini, V.; Pinczuk, A.; Rontani, M.; Goldoni, G.; Molinari, E.; Dennis, B. S.; Pfeiffer, L. N.; West, K. W., Evidence of correlation in spin excitations of few-electron quantum dots, Phys. Rev. Lett., 95, 266806 (2005)
[14] Golub, G.; van Loan, C., Matrix Computations (1996), The Johns Hopkins University Press · Zbl 0865.65009
[15] Hsieh, Y.-C.; Chen, J.-H.; Tseng, S.-C.; Liu, J.-L., The effect of band nonparabolicity on modeling few-electron ground states of charge-tunable InAs/GaAs quantum dot, Physica E, 41, 403-407 (2009)
[16] Hwang, T.-M.; Lin, W.-W.; Liu, J.-L.; Wang, W., Jacobi-Davidson methods for cubic eigenvalue problems, Numer. Linear Algebra Appl., 12, 605-624 (2005) · Zbl 1164.65366
[17] Jiang, H.; Singh, J., Strain distribution and electronic spectra of InAs/GaAs self-assembled dots: An eight-band study, Phys. Rev. B, 56, 4696-4701 (1997)
[18] Korkusinski, M.; Hawrylak, P.; Ciorga, M.; Pioro-Ladriere, M.; Sachrajda, A. S., Pairing of spin excitations in lateral quantum dots, Phys. Rev. Lett., 93, 206806 (2004)
[19] Levine, I. N., Quantum Chemistry (2000), Prentice-Hall
[20] Li, Y.; Liu, J.-L.; Voskoboynikov, O.; Lee, C. P.; Sze, S. M., Electron energy level calculations for cylindrical narrow gap semiconductor quantum dot, Comput. Phys. Comm., 140, 399-404 (2001) · Zbl 1072.82576
[21] Lin, J. C.; Guo, G. Y., Current-spin density-functional theory of the electronic and magnetic properties of quantum dots and quantum rings, Phys. Rev. B, 65, 035304 (2002)
[22] Liu, J.-L.; Chen, J.-H.; Voskoboynikov, O., A model for semiconductor quantum dot molecule based on the current spin density functional theory, Comput. Phys. Comm., 175, 575-582 (2006) · Zbl 1196.82129
[23] Lucignano, P.; Jouault, B.; Tagliacozzo, A., Spin exciton in a quantum dot with spin-orbit coupling at high magnetic field, Phys. Rev. B, 69, 045314 (2004)
[24] Maksym, P. A.; Chakraborty, T., Quantum dots in a magnetic field: Role of electron-electron interactions, Phys. Rev. Lett., 65, 108-111 (1990)
[25] Ortner, G.; Yugova, I.; von Högersthal, G.; Larionov, A.; Kurtze, H.; Yakovlev, D.; Bayer, M.; Fafard, S.; Wasilewski, Z.; Hawrylak, P.; Lyanda-Geller, Y.; Reinecke, T.; Babinski, A.; Potemski, M.; Timofeev, V.; Forchel, A., Fine structure in the excitonic emission of InAs/GaAs quantum dot molecules, Phys. Rev. B, 71, 125335 (2005)
[26] Pfannkuche, D.; Gudmundsson, V., Comparison of a Hartree, a Hartree-Fock, and an exact treatment of quantum-dot helium, Phys. Rev. B, 47, 2244-2250 (1993)
[27] Pietiläinen, P.; Chakraborty, T., Energy levels and magneto-optical transitions in parabolic quantum dots with spin-orbit coupling, Phys. Rev. B, 73, 155315 (2006)
[28] Reimann, S. M.; Manninen, M., Electronic structure of quantum dots, Rev. Modern Phys., 74, 1283-1342 (2002)
[29] Rontani, M.; Rossi, F.; Manghi, F.; Molinari, E., Coulomb correlation effects in semiconductor quantum dots: The role of dimensionality, Phys. Rev. B, 59, 10165-10175 (1999)
[30] Sleijpen, G. L.; Booten, A. G.; Fokkema, D. R.; van der Vorst, H. A., Jacobi-Davidson type methods for generalized eigenproblems and polynomial eigenproblems, BIT, 36, 595-633 (1996) · Zbl 0861.65035
[31] Strain, M. C.; Scuseria, G. E.; Frisch, M. J., Achieving linear scaling for the electronic quantum Coulomb problem, Science, 271, 51-53 (1996)
[32] Tavernier, M. B.; Anisimovas, E.; Peeters, F. M.; Szafran, B.; Adamowski, J.; Bednarek, S., Four-electron quantum dot in a magnetic field, Phys. Rev. B, 68, 205305 (2003)
[33] Voss, H., Iterative projection methods for computing relevant energy states of a quantum dot, J. Comput. Phys., 217, 824-833 (2006) · Zbl 1102.81040
[34] Voskoboynikov, O.; Li, Y.; Lu, H.-M.; Shih, C.-F.; Lee, C. P., Energy states and magnetization in nanoscale quantum rings, Phys. Rev. B, 66, 155306 (2002)
[35] Voskoboynikov, O.; Wijers, C. M.J.; Liu, J.-L.; Lee, C. P., The magneto-optical response of layers of semiconductor quantum dots and nano-rings, Phys. Rev. B, 71, 245332 (2005)
[36] Wang, W.; Hwang, T.-M.; Lin, W.-W.; Liu, J.-L., Numerical methods for semiconductor heterostructures with band nonparabolicity, J. Comput. Phys., 189, 579-606 (2003)
[37] Yang, S.-R. E.; MacDonald, A. H.; Johnson, M. D., Addition spectra of quantum dots in strong magnetic fields, Phys. Rev. Lett., 71, 3194-3197 (1993)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.