×

The incompressible two-dimensional potential flow through blades of a rotating radial impeller. (English) Zbl 1205.76154

Summary: The Busemann coefficients for the performance of a rotating impeller in 2-dimensional potential flow are computed by means of Fourier series applied to general smooth shapes of blades. Busemann’s results for the logarithmic blade are reviewed historically from Wagenbach to Acosta. The relative steady flow is analyzed by the method of Muskhelishvili. The analysis in terms of Fourier series is directly carried out in Convolution Algebra of Taylor and Laurent series. Busemann’s coefficients are re-computed with Busemann’s exact analytic equations for logarithmic shaped blades, as reference for the Fourier series method, except the theoretical asymptotic case of infinitely long blades. The convergence of series in three possible mapping planes is explored. The logarithmic blade is then used as the basis for analytic variations. Examples are given of general non-logarithmic shapes combined with the Theodorsen iteration method in DDFT. The Wislicenus coefficient and Busemann’s coefficients are re-defined for the general blade and its connection with the slip factor, and an inner slip velocity is introduced. Some results are given in the graphical form of streamlines. The alternative velocity boundary value method with Convolution Algebra is given in an Appendix.

MSC:

76G25 General aerodynamics and subsonic flows

Software:

Mathematica
Full Text: DOI

References:

[1] W. Spannhake, Leistungsaufnahme einer parallelkränzigen Zentrifugalpumpe, Festschrift, Karlsruhe 1925. Festschrift zur Jahrhundertfeier der T.H. Karlsruhe, 1925, pp. 387-400.; W. Spannhake, Leistungsaufnahme einer parallelkränzigen Zentrifugalpumpe, Festschrift, Karlsruhe 1925. Festschrift zur Jahrhundertfeier der T.H. Karlsruhe, 1925, pp. 387-400. · JFM 51.0678.05
[2] Spannhake, W., Anwendung der konformen Abbildung auf die Berechnung von Strömungen in Kreiselrädern, ZAMM Z. Angew. Math. Mech., 5, 6, 481-484 (1925) · JFM 51.0678.04
[3] Busemann, A., Das Förderhöhenverhältnis radialer Kreiselpumpen mit logarithmisch-spiraligen Schaufeln, ZAMM Z. Angew. Math. Mech., 8, 372-384 (1928) · JFM 54.0915.04
[4] A.J. Acosta, An experimental and theoretical investigation of two-dimensional centrifugal pump impellers, Thesis, California Institute of Technology, Pasadena, California, 1952.; A.J. Acosta, An experimental and theoretical investigation of two-dimensional centrifugal pump impellers, Thesis, California Institute of Technology, Pasadena, California, 1952.
[5] A.J. Acosta, Potential flow through radial flow turbomachine rotors, Report No. E-19.4, Hydrodynamics Laboratory, California Institute of Technology, Pasadena, California, 1954.; A.J. Acosta, Potential flow through radial flow turbomachine rotors, Report No. E-19.4, Hydrodynamics Laboratory, California Institute of Technology, Pasadena, California, 1954.
[6] Acosta, A. J., An experimental and theoretical investigation of two-dimensional centrifugal pump impellers, ASME Trans., 76, 5, 749-763 (1954)
[7] Muskhelishvili, N. I., Sur le problème de torsion des cylindres élastiques isotropes, Atti Accad. Lincei, Rend., 6, 9, 295-300 (1929) · JFM 55.0459.03
[8] Muskhelishvili, N. I., Some Basic Problems of the Mathematical Theory of Elasticity (1953), Noordhoff: Noordhoff Groningen, English Translation by J.R.M. Radok · Zbl 0052.41402
[9] Hassenpflug, W. C., Convolution number, Comput. Math. Appl., 26, 11, 3-135 (1993) · Zbl 0796.65072
[10] Dixon, S. L., Fluid Mechanics and Thermodynamics of Turbomachinery (1998), Elsevier: Elsevier Amsterdam
[11] Vincent, I. T., The Theory and Design of Gas Turbines and Jet Engines (1950), McGraw Hill: McGraw Hill New York
[12] Weinig, F., Die Strömung um die Schaufeln von Turbomaschinen (1935), Johann Ambrosius Barth: Johann Ambrosius Barth Leipzig · JFM 62.1574.03
[13] Weinig, F. S., (Hawthorne, W. R., Aerodynamics of Turbines and Compressors. Aerodynamics of Turbines and Compressors, High Speed Aerodynamics and Jet Propulsion, vol. X (1964), Oxford University Press: Oxford University Press London) · Zbl 0134.45502
[14] Wagenbach, W., Beiträge zur Berechnung und Konstruktion der Turbomaschinen, Z. Gesamte Turbinenwes., V, 17, 261-263 (1908), 282-286
[15] Kucharski, W., Strömungen einer reibungsfreien Flüssigkeit bei Rotation fester Körper (1918), Oldenbourg: Oldenbourg München
[16] Sörensen, E., Potentialströmungen durch rotierende Kreiselräder, ZAMM Z. Angew. Math. Mech., 7, 89 (1927) · JFM 53.0785.05
[17] Schulz, W., Das Förderhöhenverhältnis radialer Kreiselpumpen mit logarithmisch-spiraligen Schaufeln, ZAMM Z. Angew. Math. Mech., 8, 1, 10 (1928) · JFM 54.0915.03
[18] Wislicenus, G. F., Fluid Mechanics of Turbomachinery, vol. I (1947), McGraw-Hill: McGraw-Hill New York, vol. I, Dover, New York, 1965
[19] Lamb, Sir Horace, Hydrodynamics (1975), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0828.01012
[20] Stodola, A., Steam and Gas Turbines (1927), McGraw Hill, Reprinted by Peter Smith, New York, 1945
[21] Spannhake, W.; Barth, W., Potentialströmumg durch ruhende oder bewegte Schaufelgitter mit Schaufeln von beliebiger form, ZAMM Z. Angew. Math. Mech., 9, 6, 466-480 (1929) · JFM 55.1128.04
[22] Copson, E. T., Theory of Functions of a Complex Variable (1935), Oxford University Press: Oxford University Press Oxford, Thirteenth impression, 1976 · Zbl 0012.16902
[23] G.T. Csanady, Head Correction Factors for Radial Impellers, Engineering, London, vol. 190, 1960, p. 195.; G.T. Csanady, Head Correction Factors for Radial Impellers, Engineering, London, vol. 190, 1960, p. 195.
[24] Csanady, G. T., Theory of Turbomachines (1964), McGraw-Hill: McGraw-Hill New York · Zbl 0097.20603
[25] Mason, W. E., A new method for calculating the Busemann head coefficients for radial impellers, Int. J. Heat Fluid Flow, 4, 3 (1983)
[26] Weinig, F., Aerodynamik der Luftschraube (1940), Julius Springer: Julius Springer Berlin, lithoprinted by Edwards Brothers, Michigan, 1945 · JFM 66.1108.05
[27] Eck, Bruno, Ventilatoren (1957), Springer: Springer Berlin
[28] Acosta, A. J.; Bowerman, R. D., An experimental study of centrifugal-pump impellers, ASME Trans., 79, 6, 1821-1839 (1957)
[29] Scholz, Norbert, Aerodynamik der Schaufelgitter I (1965), G. Braun Karlsruhe
[30] Milne-Thomson, L. M., Theoretical Hydrodynamics (1968), Macmillan: Macmillan London · Zbl 0164.55802
[31] Milne-Thomson, L. M., Theoretical Aerodynamics (1966), Macmillan: Macmillan London · Zbl 0029.28204
[32] Hassenpflug, W. C., Revised notation for partial derivatives, Comput. Math. Appl., 26, 3, 95-105 (1993) · Zbl 0781.26005
[33] König, E., Potentialströmung durch Gitter, ZAMM Z. Angew. Math. Mech., 2, 422 (1922) · JFM 48.0948.02
[34] Betz, Albert, Konforme Abbildung (1964), Springer: Springer Berlin · Zbl 0124.41704
[35] Gostelow, J. P., Cascade Aerodynamics (1984), Pergamon: Pergamon Oxford
[36] Traupel, W., Die Berechnung der Strömung durch Schaufelgitter, Sulzer Techn. Rundsch., 1, 25-42 (1945)
[37] Traupel, W., Zur Potentialtheorie des Schaufelgitters, Sulzer Tech. Rundsch., 2, 12-30 (1948)
[38] Vavra, Michael H., Aero-Thermodynamics and Flow in Turbomachines (1974), Krieger: Krieger New York
[39] I.E. Garrick, On the potential flow past a lattice of arbitrary airfoils, NACA TR 788, Langley Field, VA, November 1944.; I.E. Garrick, On the potential flow past a lattice of arbitrary airfoils, NACA TR 788, Langley Field, VA, November 1944. · Zbl 0063.01540
[40] Visser, F. C.; Brouwers, J. J.H.; Badie, R., Theoretical analysis of inertially irrotational and solenoidal flow in two-dimensional radial-flow pump and turbine impellers with equiangular blades, J. Fluid Mech., 269, 107-141 (1994) · Zbl 0809.76004
[41] Traupel, W., On the potential theory of blade cascades, Sulzer Tech. Rev., 2, 12-30 (1948)
[42] Fornberg, Bengt, A numerical method for conformal mapping, SIAM J. Sci. Stat. Comput., 1, 3, 386-400 (1980) · Zbl 0451.30003
[43] Stepanoff, A. J., Centrifugal and Axial Flow Pumps (1957), John Wiley: John Wiley New York · Zbl 0067.42105
[44] Wolfram, S., Mathematica, A System for Doing Mathematics by Computer (1988), Addison Wesley: Addison Wesley New York · Zbl 0671.65002
[45] Eck, Bruno, Ventilatoren (1972), Springer: Springer Berlin
[46] Traupel, W., Die Theorie der Strömung durch Radialmaschinen (1962), Braun: Braun Karlsruhe · Zbl 0101.20204
[47] C. Schreck, Die Minderleistung der Radialmaschine, Vergleich von Messungen mit der Theorie von Busemann, AVA, Göttingen Forschungsbericht, Nr. 63-01, 24, 1962.; C. Schreck, Die Minderleistung der Radialmaschine, Vergleich von Messungen mit der Theorie von Busemann, AVA, Göttingen Forschungsbericht, Nr. 63-01, 24, 1962.
[48] Kluge, Friedrich, Kreiselgebläse und Kreiselverdichter Radialer Bauart (1953), Springer: Springer Berlin
[49] Pfleiderer, C., Die Kreiselpumpen für Flüssigkeiten und Gase (1961), Springer: Springer Berlin
[50] Stepanoff, A. J., Turboblowers (1955), John Wiley: John Wiley New York · Zbl 0067.42105
[51] Peck, J. F., Investigation concerning flow conditions in a centrifugal pump and the effect of blade loading on head slip, Proc. Inst. Mech. Eng., 164, 1, 1 (1951), (including discussions by Hutton and Woster)
[52] Reddy, K. R., Relative eddy and its effects on the performance of a radial bladed centrifugal impeller, J. R. Aeronaut. Soc. (London), 547 (1954)
[53] Timoshenko, S. P.; Goodier, J. N., Theory of Elasticity (1970), McGraw-Hill: McGraw-Hill New York · Zbl 0266.73008
[54] Von Backström, T. W., Slip factor, Trans. ASME (New York) (2005)
[55] G. Kamimoto, Y. Matsuoka, One method for calculating the flow in centrifugal type impeller, especialloy with a large number of vanes and with splitter vanes, in: Proceedings of IAHR Symposium, Paper No. B-12, Sendai, Japan, 1962, pp. 377-395.; G. Kamimoto, Y. Matsuoka, One method for calculating the flow in centrifugal type impeller, especialloy with a large number of vanes and with splitter vanes, in: Proceedings of IAHR Symposium, Paper No. B-12, Sendai, Japan, 1962, pp. 377-395.
[56] Kamimoto, G.; Matsuoka, Y., Theory of centrifugal type impeller with vanes of arbitrary form, Bull. Japan. Soc. Mech. Eng., 2, 8, 630-637 (1969)
[57] I.E. Garrick, Potential flow about arbitrary biplane wing sections, NACA TR 542, Langley Field, VA, November 1936.; I.E. Garrick, Potential flow about arbitrary biplane wing sections, NACA TR 542, Langley Field, VA, November 1936. · JFM 62.1573.05
[58] Wiesner, F. J., A review of slip factors for centrifugal impellers, Trans. ASME, J. Eng. Power, 558-572 (1967)
[59] J. Gruber, Die Berechnung von radialen Laufrädern mit vorwärtsgekrümmter Beschaufelung, Maschinenbautechnik, 1961, p. 440.; J. Gruber, Die Berechnung von radialen Laufrädern mit vorwärtsgekrümmter Beschaufelung, Maschinenbautechnik, 1961, p. 440.
[60] Mohana Kumar, T. C.; Rao, Y. V.N., Theoretical investigation of pressure distributions along the surfaces of a thin blade of arbitrary geometry of a two-dimensional centrifugal pump impeller, Trans. ASME, J. Fluids Eng., 99, 531-542 (1977)
[61] Rainville, E. D., Special Functions (1960), Chelsea: Chelsea New York · Zbl 0050.07401
[62] Eckert, B.; Schnell, E., Axial und Radial Kompressoren (1961), Springer: Springer Berlin · Zbl 0098.37006
[63] Paeng, K. S.; Chung, M. K., A new slip factor for centrifugal impellers, TN Proc. Inst. Mech. Eng., 215, Part A, 645-649 (2001)
[64] Theodore Theodorsen, Theory of wing sections of arbitrary shape, NACA TR No. 411, 1931.; Theodore Theodorsen, Theory of wing sections of arbitrary shape, NACA TR No. 411, 1931. · Zbl 0004.17502
[65] Theodore Theodorsen, I.E. Garrick, General potential theory of arbitrary wing sections, NACA Report No. 452, 1933.; Theodore Theodorsen, I.E. Garrick, General potential theory of arbitrary wing sections, NACA Report No. 452, 1933. · JFM 59.1448.02
[66] Ives, David C., A modern look at conformal mapping including multiply connected regions, AIAA J., 9, 8, 1006-1011 (1976) · Zbl 0346.76049
[67] Howell, A. R., Note on the theory of arbitrary airfoils in cascade, Phil. Mag., 39, 913-927 (1948) · Zbl 0031.13403
[68] von Kármán, Th.; Burgers, J. M., (Durand, William Frederick, Aerodynamic Theory, Vol. II, Division E, Ch II B, Section 23 (1935), Springer: Springer Berlin), 91, Reprint Dover, New York, 1963 · JFM 61.0902.01
[69] Roudebush, William H., Aerodynamics of Turbines and Compressors (1965), NASA: NASA Washington, DC
[70] Warschawski, W., On Theodorsen’s method of conformal mapping of nearly circular regions, Quart. Appl. Math., 3, 12-28 (1945) · Zbl 0061.15503
[71] Gaier, Dieter, Konstruktive Methoden der konformen Abbildung (1964), Springer: Springer Berlin · Zbl 0132.36702
[72] Opitz, Günter, Die Konvergenz des Verfahrens von Theodorsen zur konformen Abbildung kreisähnlicher Gebiete, Arch. Math., 2, 110-116 (1949-1950) · Zbl 0035.05603
[73] Hughes, Thomas J. R., Linear Static and Dynamic Finite Element Analysis (1987), Prentice-Hall: Prentice-Hall Englewood Cliffs · Zbl 0634.73056
[74] Henrici, P., Applied and Computational Complex Analysis, vol. 1 (1974), John Wiley: John Wiley New York · Zbl 0313.30001
[75] Hassenpflug, W. C., Error analysis in the series evaluation of the exponential type integral \(e^z E_1(z)\), Comput. Math. Appl., 43, 207-266 (2002) · Zbl 0999.65012
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.