×

Constraint learning using adaptive neural-fuzzy inference system. (English) Zbl 1205.68331

Summary: The purpose of this paper is to present a new method for solving parametric programming problems; a new scheme of constraints fuzzification. In the proposed approach, constraints are learned based on deductive learning.
Adaptive Neural-Fuzzy Inference System (ANFIS) is used for constraint learning by generating input and output membership functions and suitable fuzzy rules.
The experimental results show the ability of the proposed approach to model the set of constraints and solve parametric programming. Some notes in the proposed method are clustering of similar constraints, constraints generalization and converting crisp set of constraints to a trained system with fuzzy output. Finally, this idea for modeling of constraint in the Support Vector Machine (SVM) classifier is used and shows that this approach can obtain a soft margin in the SVM.
Properties of the new scheme such as global view of constraints, constraints generalization, clustering of similar constraints, creation of real fuzzy constraints, study of constraint strength and increasing the degree of importance to constraints are different aspects of the proposed method.

MSC:

68T05 Learning and adaptive systems in artificial intelligence
03B52 Fuzzy logic; logic of vagueness
Full Text: DOI

References:

[1] DOI: 10.1007/11339366_3 · doi:10.1007/11339366_3
[2] DOI: 10.1109/TBME.2006.883728 · doi:10.1109/TBME.2006.883728
[3] Chu, L. and Wu, C. (2004), ”A fuzzy support vector machine based on geometric model”,Proceedings of the 5th World Congress on Intelligent Control and Automation, Hangzhou, People’s Republic of China, pp. 1843-6. · doi:10.1109/WCICA.2004.1340994
[4] DOI: 10.1109/TIP.2007.891067 · doi:10.1109/TIP.2007.891067
[5] DOI: 10.1016/j.surfcoat.2006.02.034 · doi:10.1016/j.surfcoat.2006.02.034
[6] DOI: 10.1109/TIM.2006.887321 · doi:10.1109/TIM.2006.887321
[7] DOI: 10.1016/j.amc.2006.08.069 · Zbl 1171.65044 · doi:10.1016/j.amc.2006.08.069
[8] DOI: 10.1016/0377-2217(93)E0338-X · Zbl 0899.90160 · doi:10.1016/0377-2217(93)E0338-X
[9] DOI: 10.1016/j.eswa.2005.12.010 · doi:10.1016/j.eswa.2005.12.010
[10] DOI: 10.1109/21.256541 · doi:10.1109/21.256541
[11] DOI: 10.1016/j.neucom.2004.09.002 · doi:10.1016/j.neucom.2004.09.002
[12] DOI: 10.1016/S0020-0255(03)00074-4 · Zbl 1047.90079 · doi:10.1016/S0020-0255(03)00074-4
[13] DOI: 10.1016/j.engappai.2006.11.014 · doi:10.1016/j.engappai.2006.11.014
[14] DOI: 10.1109/TVT.2005.861171 · doi:10.1109/TVT.2005.861171
[15] DOI: 10.1016/j.fss.2003.09.010 · Zbl 1061.90122 · doi:10.1016/j.fss.2003.09.010
[16] DOI: 10.1109/72.991432 · doi:10.1109/72.991432
[17] DOI: 10.1016/j.patrec.2004.06.009 · doi:10.1016/j.patrec.2004.06.009
[18] DOI: 10.1109/TNN.2006.883013 · doi:10.1109/TNN.2006.883013
[19] DOI: 10.1016/j.ejor.2006.01.005 · Zbl 1109.90035 · doi:10.1016/j.ejor.2006.01.005
[20] DOI: 10.1016/j.fss.2006.11.003 · Zbl 1116.90415 · doi:10.1016/j.fss.2006.11.003
[21] DOI: 10.1016/j.engappai.2006.03.002 · doi:10.1016/j.engappai.2006.03.002
[22] DOI: 10.1016/j.eswa.2005.04.008 · doi:10.1016/j.eswa.2005.04.008
[23] DOI: 10.1016/j.fss.2006.10.028 · Zbl 1115.68551 · doi:10.1016/j.fss.2006.10.028
[24] DOI: 10.1016/0377-2217(95)00008-9 · Zbl 0914.90265 · doi:10.1016/0377-2217(95)00008-9
[25] DOI: 10.1016/j.amc.2007.02.152 · Zbl 1193.45029 · doi:10.1016/j.amc.2007.02.152
[26] DOI: 10.1016/j.neucom.2006.01.002 · doi:10.1016/j.neucom.2006.01.002
[27] DOI: 10.1016/j.ipm.2006.09.011 · doi:10.1016/j.ipm.2006.09.011
[28] DOI: 10.1109/TFUZZ.2005.859320 · doi:10.1109/TFUZZ.2005.859320
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.