×

Dual of the function algebra \(A^{-\infty }(D)\) and representation of functions in Dirichlet series. (English) Zbl 1205.32004

Let \(D\) be a bounded \(C^2\)-smooth convex domain in \(\mathbb C^n\) and let \(d(z)\) be the distance function of \(z\) to the boundary of \(D\). The authors determine the dual, \(A^{-\infty}_D\), of the space \[ A^{-\infty}(D)=\{f \text{ holomorphic in } D: \exists n\in \mathbb N, \sup_{z\in D} |f(z)|\, d(z)^n<\infty\}, \] endowed with a natural inductive limit topology. Countable sets of sufficiency for \(A^{-\infty}_D\) are constructed. Discussed is also the problem of representing functions in \(A^{-\infty}(D)\) by Dirichlet series \(\sum_{k=1}^\infty c_k e^{\left <\lambda_k,z\right>}\).

MSC:

32A38 Algebras of holomorphic functions of several complex variables
46A13 Spaces defined by inductive or projective limits (LB, LF, etc.)
Full Text: DOI

References:

[1] Alexander V. Abanin and Le Hai Khoi, On the duality between \?^{-\infty }(\?) and \?^{-\infty }_{\?} for convex domains, C. R. Math. Acad. Sci. Paris 347 (2009), no. 15-16, 863 – 866 (English, with English and French summaries). · Zbl 1177.46016 · doi:10.1016/j.crma.2009.06.008
[2] Abanin A.V. and Khoi L.H., Pre-dual of the function algebra \( A^{-\infty}(D)\) and representation of functions in Dirichlet series, Complex Anal. Oper. Theory, DOI 10.1007/s 11785-010-0047-8. · Zbl 1275.32008
[3] L. A. Aĭzenberg, The general form of a continuous linear functional on the space of functions holomorphic in a convex region of \?\(^{n}\), Dokl. Akad. Nauk SSSR 166 (1966), 1015 – 1018 (Russian).
[4] David E. Barrett, Duality between \?^{\infty } and \?^{-\infty } on domains with nondegenerate corners, Multivariable operator theory (Seattle, WA, 1993) Contemp. Math., vol. 185, Amer. Math. Soc., Providence, RI, 1995, pp. 77 – 87. · Zbl 0834.32002 · doi:10.1090/conm/185/02149
[5] Steven R. Bell, Biholomorphic mappings and the \partial -problem, Ann. of Math. (2) 114 (1981), no. 1, 103 – 113. · Zbl 0423.32009 · doi:10.2307/1971379
[6] Young-Jun Choi, Le Hai Khoi, and Kang-Tae Kim, On an explicit construction of weakly sufficient sets for the function algebra \?^{-\infty }(\Omega ), Complex Var. Elliptic Equ. 54 (2009), no. 9, 879 – 897. · Zbl 1202.32005 · doi:10.1080/17476930903030028
[7] Leon Ehrenpreis, Analytically uniform spaces and some applications, Trans. Amer. Math. Soc. 101 (1961), 52 – 74. · Zbl 0101.09103
[8] Lars Hörmander, An introduction to complex analysis in several variables, 3rd ed., North-Holland Mathematical Library, vol. 7, North-Holland Publishing Co., Amsterdam, 1990. · Zbl 0685.32001
[9] Lars Hörmander, Notions of convexity, Progress in Mathematics, vol. 127, Birkhäuser Boston, Inc., Boston, MA, 1994. · Zbl 0835.32001
[10] Lê Hai Khôi, Espaces conjugués ensembles faiblement suffisants discrets et systèmes de représentation exponentielle, Bull. Sci. Math. 113 (1989), no. 3, 309 – 347 (French). · Zbl 0701.46013
[11] Christer O. Kiselman, A study of the Bergman projection in certain Hartogs domains, Several complex variables and complex geometry, Part 3 (Santa Cruz, CA, 1989) Proc. Sympos. Pure Math., vol. 52, Amer. Math. Soc., Providence, RI, 1991, pp. 219 – 231. · Zbl 0744.32011 · doi:10.1090/pspum/052.3/1128596
[12] Ju. F. Korobeĭnik, A certain dual problem. II. Applications to \?\?*-spaces, and other questions, Mat. Sb. (N.S.) 98(140) (1975), no. 1(9), 3 – 26, 157 (Russian).
[13] Korobeinik Yu.F., Representing systems, Math. USSR-Izv. 12 (1978), 309-335. · Zbl 0401.46012
[14] Korobeinik Yu.F., Representing systems, Russian Math. Surveys 36 (1981), 75-137. · Zbl 0483.30003
[15] André Martineau, Equations différentielles d’ordre infini, Bull. Soc. Math. France 95 (1967), 109 – 154 (French). · Zbl 0167.44202
[16] Reinhold Meise and Dietmar Vogt, Introduction to functional analysis, Oxford Graduate Texts in Mathematics, vol. 2, The Clarendon Press, Oxford University Press, New York, 1997. Translated from the German by M. S. Ramanujan and revised by the authors. · Zbl 0924.46002
[17] S. N. Melikhov, Absolutely convergent series in canonical inductive limits, Mat. Zametki 39 (1986), no. 6, 877 – 886, 943 (Russian). · Zbl 0631.46004
[18] Sergej N. Melikhov, (DFS)-spaces of holomorphic functions invariant under differentiation, J. Math. Anal. Appl. 297 (2004), no. 2, 577 – 586. Special issue dedicated to John Horváth. · Zbl 1068.46017 · doi:10.1016/j.jmaa.2004.03.030
[19] Dennis M. Schneider, Sufficient sets for some spaces of entire functions, Trans. Amer. Math. Soc. 197 (1974), 161 – 180. · Zbl 0264.46018
[20] Emil J. Straube, Harmonic and analytic functions admitting a distribution boundary value, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 11 (1984), no. 4, 559 – 591. · Zbl 0582.31003
[21] B. A. Taylor, Discrete sufficient sets for some spaces of entire functions, Trans. Amer. Math. Soc. 163 (1972), 207 – 214. · Zbl 0231.46050
[22] V. M. Trutnev, A radial indicator in the theory of Borel summability, and certain applications, Sibirsk. Mat. Ž. 13 (1972), 659 – 664 (Russian). · Zbl 0249.40004
[23] Hassler Whitney, Analytic extensions of differentiable functions defined in closed sets, Trans. Amer. Math. Soc. 36 (1934), no. 1, 63 – 89. · Zbl 0008.24902
[24] V. V. Žarinov, Compact families of locally convex spaces and FS and DFS spaces, Uspekhi Mat. Nauk 34 (1979), no. 4(208), 97 – 131, 256 (Russian).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.