×

On the variable Wiener indices of trees with given maximum degree. (English) Zbl 1205.05073

Summary: The Wiener index of a tree \(T\) obeys the relation \(W(T)=\sum_en_{1}(e)\cdot n_{2}(e)\), where \(n_{1}(e)\) and \(n_{2}(e)\) are the number of vertices adjacent to each of the two end vertices of the edge \(e\), respectively, and where the summation goes over all edges of \(T\). Lately, Nikolić, Trinajstić and Randić put forward a novel modification \(^mW\) of the Wiener index, defined as \(^mW(T)=\sum e(n_{1}(e)\cdot n_{2}(e))^{ - 1}\). Very recently, Gutman, Vukičević and Žerovnik extended the definitions of \(W(T)\) and \(^mW(T)\) to be \(^mW\lambda (T)=\sum e(n_{1}(e)\cdot n_{2}(e))\lambda \), and they called \(^mW\) the modified Wiener index of \(T\), and \(^mW\lambda (T)\) the variable Wiener index of \(T\). Let \(\Delta (T)\) denote the maximum degree of \(T\). Let \(\mathcal T_n\) denote the set of trees on \(n\) vertices, and \(\mathcal T_n^c=\{T\in\mathcal T_n| \Delta(T)=c\}\). In this paper, we determine the first two largest (resp. smallest) values of \(mW\lambda (T)\) for \(\lambda >0\) (resp. \(\lambda <0\)) in \(\mathcal T^c_n\), where \(c\geq\frac12\). And we identify the first two largest and first three smallest Wiener indices in \(\mathcal T^c_n(c\geq\frac12)\), respectively. Moreover, the first two largest and first two smallest modified Wiener indices in \(\mathcal T^c_n(c\geq\frac12)\) are also identified, respectively.

MSC:

05C12 Distance in graphs
05C05 Trees
05C35 Extremal problems in graph theory
Full Text: DOI

References:

[1] Wiener, H., Structural determination of paraffin boiling points, J. Am. Chem. Soc., 69, 17-20 (1947)
[2] (Devillers, J.; Balaban, A. T., Topological Indices and Related Descriptors in QSAR and QSPR (1999), Gordon & Breach: Gordon & Breach Amsterdam)
[3] Karelson, M., Molecular Descriptors in QSAR/QSPR (2000), Wiley/Interscience: Wiley/Interscience New York
[4] Dobrynin, A. A.; Entringer, R.; Gutman, I., Wiener index of trees: theory and applications, Acta Appl. Math., 66, 211-249 (2001) · Zbl 0982.05044
[5] Nikolić, S.; Trinajstić, N.; Randić, M., Wiener index revisited, Chem. Phys. Lett., 333, 319-321 (2001)
[6] Gutman, I.; Vukičević, D.; Z˘erovnik, J., A class of modified Wiener indices, Croat. Chem. Acta, 77, 103-109 (2004)
[7] Luc˘ić, B.; Milic˘ević, A.; Nikolić, S.; Trinajstić, N., On variable Wiener index, Indian J. Chem., 42A, 1279-1282 (2003)
[8] Gutman, I.; Vidović, D.; Furtula, B.; Zenkevich, I. G., Wiener-type indices and internal molecular energy, J. Serb. Chem. Soc., 68, 401-408 (2003)
[9] Vukic˘ević, D., Distinction between modifications of Wiener indices, MATCH Commun. Math. Comput. Chem., 47, 87-105 (2003) · Zbl 1047.05042
[10] Gorše, M.; Žerovnik, J., A remark on modified Wiener indices, MATCH Commun. Math. Comput. Chem., 50, 109-116 (2004) · Zbl 1104.05067
[11] Zhang, B.; Zhou, B., Modified Wiener indices of trees, MATCH Commun. Math. Comput. Chem., 56, 179-188 (2006) · Zbl 1274.05139
[12] Fischermann, M.; Hoffmann, A.; Rautenbach, D.; Székely, L.; Volkmann, L., Wiener index versus maximum degree in trees, Discrete Appl. Math., 122, 127-137 (2002) · Zbl 0993.05061
[13] Liu, M. H.; Liu, B. L., On the \(k\)-th smallest and \(k\)-th greatest modified Wiener indices of trees, Discrete Appl. Math., 158, 699-705 (2010) · Zbl 1225.05088
[14] Luo, W.; Zhou, B., On ordinary and reverse Wiener indices of non-caterpillars, Math. Comput. Modelling, 50, 188-193 (2009) · Zbl 1185.05146
[15] Zhou, B.; Li, F., On minimal energies of trees of a prescribed diameter, J. Math. Chem., 39, 465-473 (2006) · Zbl 1100.05064
[16] Gutman, I.; Furtula, B.; Arsić, B.; Bošković, Z.ˇ, On the relation between Zenkevich and Wiener indices of alkanes, J. Serb. Chem. Soc., 69, 265-271 (2004)
[17] Gutman, I.; Zenkevich, I. G., Wiener index and vibrational energy, Z. Naturforsch. A, 57, 824-828 (2002)
[18] Gutman, I.; Furtula, B.; Arsić, B., On structure descriptors related with intramolecular energy of alkanes, Z. Naturforsch. A, 59, 694-698 (2004)
[19] Deng, H. Y., The trees on \(n \geq 9\) vertices with the first to seventeenth greastest Wiener indices are chemical trees, MATCH Commun. Math. Comput. Chem., 57, 393-402 (2007) · Zbl 1150.05007
[20] Zhou, B.; Cai, X.; Trinajstić, N., On reciprocal complementary Wiener number, Discrete Appl. Math., 157, 1628-1633 (2009) · Zbl 1163.92045
[21] Luo, W.; Zhou, B., Further properties of reverse Wiener index, MATCH Commun. Math. Comput. Chem., 61, 653-661 (2009) · Zbl 1224.05149
[22] Vukičević, D.; Gutman, I., Note on a class of modified Wiener indices, MATCH Commun. Math. Comput. Chem., 47, 107-117 (2003) · Zbl 1027.05025
[23] Vukičević, D.; Graovac, A., On modified Wiener indices of thorn graphs, MATCH Commun. Math. Comput. Chem., 50, 93-108 (2004) · Zbl 1051.05041
[24] Wang, H., The extremal values of the Wiener index of a tree with given degree sequence, Discrete Appl. Math., 156, 2647-2654 (2008) · Zbl 1155.05020
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.