×

The QCD nature of dark energy. (English) Zbl 1204.83121

Summary: The origin of the observed dark energy could be explained entirely within the standard model, with no new fields required. We show how the low-energy sector of the chiral QCD Lagrangian, once embedded in a non-trivial spacetime, gives rise to a cosmological vacuum energy density which can be presented entirely in terms of QCD parameters and the Hubble constant \(H\) as \(\rho_{\Lambda}\simeq H\cdot m_q(\overline{q}q)/m_{\eta'}\sim (4.3\cdot 10^{-3}\)eV\()^4\). In this work we focus on the dynamics of the ghost fields that are essential ingredients of the aforementioned Lagrangian. In particular, we argue that the Veneziano ghost, being unphysical in the usual Minkowski QFT, exhibits important physical effects if the universe is expanding. Such effects are naturally very small as they are proportional to the rate of expansion \(H/\Lambda _{QCD}\sim 10^{-41}\). The co-existence of these two drastically different scales (\(\Lambda _{QCD}\sim 100\) MeV and \(H\sim 10^{ - 33}\) eV) is a direct consequence of the auxiliary conditions on the physical Hilbert space that are necessary to keep the theory unitary. The exact cancellation taking place in Minkowski space due to this auxiliary condition is slightly violated when the system is upgraded to an expanding background. Nevertheless, this “tiny” effect would in fact the driving force accelerating the universe today. We also derive the time-dependent equation of state \(w(t)\) for the dark energy component which tracks the dynamics of the Veneziano ghost in a FLRW universe.

MSC:

83F05 Relativistic cosmology
81T20 Quantum field theory on curved space or space-time backgrounds
81V05 Strong interaction, including quantum chromodynamics
81V22 Unified quantum theories

References:

[1] Urban, F. R.; Zhitnitsky, A. R.
[2] Thomas, E. C.; Urban, F. R.; Zhitnitsky, A. R., JHEP, 0908, 043 (2009)
[3] Dreyer, O.
[4] Volovik, G. E., AIP Conf. Proc., 850, 26 (2006)
[5] Antoniadis, I.; Mazur, P. O.; Mottola, E., New J. Phys., 9, 11 (2007)
[6] Piazza, F.
[7] Piazza, F., New J. Phys., 11, 113050 (2009)
[8] Riess, A. G., Astron. J., 116, 1009 (1998)
[9] Perlmutter, S., Astrophys. J., 517, 565 (1999)
[10] Komatsu, E., Astrophys. J. Suppl., 180, 330 (2009)
[11] Urban, F. R.; Zhitnitsky, A. R., Phys. Rev. D, 80, 063001 (2009)
[12] Urban, F. R.; Zhitnitsky, A. R., JCAP, 0909, 018 (2009)
[13] Veneziano, G., Nucl. Phys. B, 159, 213 (1979)
[14] Zeldovich, Y. B., JETP Lett.. JETP Lett., Pis’ma Zh. Eksp. Teor. Fiz., 6, 883 (1967)
[15] Bjorken, J.
[16] Schutzhold, R., Phys. Rev. Lett., 89, 081302 (2002)
[17] Bjorken, J. D.
[18] Klinkhamer, F. R.; Volovik, G. E., Phys. Rev. D, 77, 085015 (2008)
[19] Klinkhamer, F. R.; Volovik, G. E., Phys. Rev. D, 78, 063528 (2008)
[20] Klinkhamer, F. R.; Volovik, G. E., Phys. Rev. D, 79, 063527 (2009)
[21] Witten, E., Nucl. Phys. B, 156, 269 (1979)
[22] Di Vecchia, P.; Veneziano, G., Nucl. Phys. B, 171, 253 (1980)
[23] Kogut, J. B.; Susskind, L., Phys. Rev. D, 11, 3594 (1975)
[24] Rosenzweig, C.; Schechter, J.; Trahern, C. G., Phys. Rev. D, 21, 3388 (1980)
[25] Gupta, S., Proc. Phys. Soc. A, 63, 681 (1950) · Zbl 0040.42403
[26] Bleuler, K., Helv. Phys. Acta, 23, 567 (1950) · Zbl 0040.42404
[27] Shore, G. M., Lect. Notes Phys., 737, 235 (2008)
[28] Birrell, N. D.; Davies, P. C.W., Quantum Fields in Curved Space (1982), Cambridge Univ. Press · Zbl 0476.53017
[29] DeWitt, B. S., Phys. Rep. C, 19, 295 (1975)
[30] G.W. Semenoff, A.R. Zhitnitsky, in preparation; G.W. Semenoff, A.R. Zhitnitsky, in preparation
[31] Landau, L. D.; Lifshtz, E. M., Quantum Mechanics, vol. 3 (1977), Butterworth-Heinemann
[32] Copeland, E. J.; Sami, M.; Tsujikawa, S., Int. J. Mod. Phys. D, 15, 1753 (2006) · Zbl 1203.83061
[33] Frieman, J.; Turner, M.; Huterer, D., Annu. Rev. Astron. Astrophys., 46, 385 (2008)
[34] Diakonov, D.; Eides, M. I., Sov. Phys. JETP. Sov. Phys. JETP, Zh. Eksp. Teor. Fiz., 81, 434 (1981)
[35] Dowker, J. S.; Critchley, R., Phys. Rev. D, 13, 3224 (1976)
[36] Allen, B.; Jacobson, T., Commun. Math. Phys., 103, 669 (1986) · Zbl 0632.53060
[37] Tsamis, N. C.; Woodard, R. P., J. Math. Phys., 48, 052306 (2007) · Zbl 1144.81417
[38] Liddle, A. R.; Lyth, D. H., Cosmological Inflation and Large-Scale Structure (2000), Cambridge Univ. Press
[39] Brandenberger, R. H.
[40] Bassett, B. A.; Corasaniti, P. S.; Kunz, M., Astrophys. J., 617, L1 (2004)
[41] Stern, D.; Jimenez, R.; Verde, L.; Kamionkowski, M.; Stanford, S. A.
[42] Hooper, D.; Dodelson, S., Astropart. Phys., 27, 113 (2007)
[43] Basilakos, S.; Perivolaropoulos, L., Mon. Not. R. Astron. Soc., 391, 411 (2008)
[44] Xia, J. Q.; Viel, M., JCAP, 0904, 002 (2009)
[45] Basilakos, S.; Plionis, M.; Sola, J.
[46] Jimenez, J. B.; Maroto, A. L., JCAP, 0903, 016 (2009)
[47] Jimenez, J. B.; Maroto, A. L.
[48] Cline, J. M.; Jeon, S.; Moore, G. D., Phys. Rev. D, 70, 043543 (2004)
[49] Levin, J. J., Phys. Rep., 365, 251 (2002) · Zbl 0995.83088
[50] Koike, T.; Tanimoto, M.; Hosoya, A., J. Math. Phys., 35, 4855 (1994) · Zbl 0820.53074
[51] Tanimoto, M.; Koike, T.; Hosoya, A., J. Math. Phys., 38, 350 (1997) · Zbl 0868.53057
[52] Tanimoto, M.; Koike, T.; Hosoya, A., J. Math. Phys., 38, 6560 (1997) · Zbl 0898.32014
[53] Wald, R. M. (1984), Univ. Press: Univ. Press Chicago, USA, 491 p · Zbl 0549.53001
[54] Koivisto, T.; Mota, D. F., Astrophys. J., 679, 1 (2008)
[55] Koivisto, T.; Mota, D. F., JCAP, 0806, 018 (2008)
[56] Zhitnitsky, A., Phys. Rev. D, 74, 043515 (2006)
[57] Forbes, M. M.; Zhitnitsky, A. R., Phys. Rev. D, 78, 083505 (2008)
[58] Witten, E., Phys. Rev. D, 30, 272 (1984)
[59] Oaknin, D. H.; Zhitnitsky, A., Phys. Rev. D, 71, 023519 (2005)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.