×

The real topological vertex at work. (English) Zbl 1204.81145

Summary: We develop the real vertex formalism for the computation of the topological string partition function with D-branes and O-planes at the fixed point locus of an anti-holomorphic involution acting non-trivially on the toric diagram of any local toric Calabi-Yau manifold. Our results cover in particular the real vertex with non-trivial fixed leg. We give a careful derivation of the relevant ingredients using duality with Chern-Simons theory on orbifolds. We show that the real vertex can also be interpreted in terms of a statistical model of symmetric crystal melting. Using this latter connection, we also assess the constant map contribution in Calabi-Yau orientifold models. We find that there are no perturbative contributions beyond one-loop, but a non-trivial sum over non-perturbative sectors, which we compare with the non-perturbative contribution to the closed string expansion.

MSC:

81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory
14J32 Calabi-Yau manifolds (algebro-geometric aspects)
81T10 Model quantum field theories

References:

[1] Aganagic, M.; Klemm, A.; Marino, M.; Vafa, C., The topological vertex, Commun. Math. Phys., 254, 425 (2005) · Zbl 1114.81076
[2] Krefl, D.; Walcher, J., The real topological string on a local Calabi-Yau
[3] Walcher, J., Evidence for tadpole cancellation in the topological string, Comm. Number Th. Phys., 3, 111-172 (2009) · Zbl 1168.81023
[4] Bouchard, V.; Florea, B.; Marino, M., Counting higher genus curves with crosscaps in Calabi-Yau orientifolds, JHEP, 0412, 035 (2004)
[5] Bouchard, V.; Florea, B.; Marino, M., Topological open string amplitudes on orientifolds, JHEP, 0502, 002 (2005)
[6] Cook, P. L.H.; Ooguri, H.; Yang, J., New anomalies in topological string theory, Prog. Theor. Phys. Suppl., 177, 120 (2009) · Zbl 1173.81331
[7] Bonelli, G.; Prudenziati, A.; Tanzini, A.; Yang, J., Decoupling A and B model in open string theory — Topological adventures in the world of tadpoles, JHEP, 0906, 046 (2009)
[8] Horava, P., Chern-Simons gauge theory on orbifolds: Open strings from three dimensions, J. Geom. Phys., 21, 1 (1996) · Zbl 0863.58083
[9] Okounkov, A.; Reshetikhin, N.; Vafa, C., Quantum Calabi-Yau and classical crystals · Zbl 1129.81080
[10] Hori, K.; Hosomichi, K.; Page, D. C.; Rabadan, R.; Walcher, J., Non-perturbative orientifold transitions at the conifold, JHEP, 0510, 026 (2005)
[11] Gopakumar, R.; Vafa, C., M-theory and topological strings. I
[12] Macdonald, I. G., Symmetric Functions and Hall Polynomials (1995), Oxford University Press · Zbl 0899.05068
[13] Sinha, S.; Vafa, C., SO and Sp Chern-Simons at large \(N\)
[14] Witten, E., Chern-Simons gauge theory as a string theory, Prog. Math., 133, 637 (1995) · Zbl 0844.58018
[15] MacMahon, P. A., Partitions of numbers whose graphs possess symmetry, Trans. Cambridge Phil. Soc., 17, 149-170 (1898-1899) · JFM 30.0201.04
[16] Andrews, G., Plane partitions (I): the MacMahon conjecture, Studies Foundations Combin. Adv. Math. Suppl. Studies, 1, 131-150 (1978) · Zbl 0462.10010
[17] Kac, V., Vertex Algebras for Beginners, University Lecture Series, vol. 10 (1997), American Mathematical Society
[18] Faber, C.; Pandharipande, R., Hodge integrals and Gromov-Witten theory, Invent. Math., 139, 173 (2000) · Zbl 0960.14031
[19] Dabholkar, A.; Denef, F.; Moore, G. W.; Pioline, B., Precision counting of small black holes, JHEP, 0510, 096 (2005)
[20] Pasquetti, S.; Schiappa, R., Borel and Stokes nonperturbative phenomena in topological string theory and \(c = 1\) matrix models · Zbl 1208.81170
[21] Bershadsky, M.; Cecotti, S.; Ooguri, H.; Vafa, C., Holomorphic anomalies in topological field theories, Nucl. Phys. B, 405, 279 (1993) · Zbl 0908.58074
[22] Ooguri, H.; Vafa, C., Knot invariants and topological strings, Nucl. Phys. B, 577, 419 (2000) · Zbl 1036.81515
[23] Chiang, T. M.; Klemm, A.; Yau, S. T.; Zaslow, E., Local mirror symmetry: Calculations and interpretations, Adv. Theor. Math. Phys., 3, 495 (1999) · Zbl 0976.32012
[24] Konishi, Y.; Minabe, S., Flop invariance of the topological vertex · Zbl 1157.14041
[25] Katz, S. H.; Klemm, A.; Vafa, C., Adv. Theor. Math. Phys., 3, 1445 (1999) · Zbl 0985.81081
[26] Bryan, J.; Karp, D., The closed topological vertex via the Cremona transform, J. Algebraic Geometry, 14, 529-542 (2005) · Zbl 1094.14041
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.