×

Bayesian inference in joint modelling of location and scale parameters of the \(t\) distribution for longitudinal data. (English) Zbl 1204.62040

Summary: This paper presents a fully Bayesian approach to multivariate \(t\) regression models whose mean vector and scale covariance matrix are modelled jointly for analyzing longitudinal data. The scale covariance structure is factorized in terms of unconstrained autoregressive and scale innovation parameters through a modified Cholesky decomposition. A computationally flexible data augmentation sampler coupled with the Metropolis-within-Gibbs scheme is developed for computing the posterior distributions of parameters. The Bayesian predictive inference for the future response vector is also investigated. The proposed methodologies are illustrated through a real example from a sleep dose-response study.

MSC:

62F15 Bayesian inference
62H12 Estimation in multivariate analysis
62P10 Applications of statistics to biology and medical sciences; meta analysis
65C60 Computational problems in statistics (MSC2010)

Software:

lme4
Full Text: DOI

References:

[1] Azzalini, A.; Capitaino, A., Statistical applications of the multivariate skew-normal distribution, J. R. Statist. Soc. B, 61, 579-602 (1999) · Zbl 0924.62050
[2] Azzalini, A.; Capitanio, A., Distributions generated by perturbation of symmetry with emphasis on a multivariate skew \(t\)-distribution, J. R. Statist. Soc. B, 65, 367-389 (2003) · Zbl 1065.62094
[3] Bates, D.M., 2007. lme4 R package \(\langle\) http://cran.r-project.org \(\rangle \); Bates, D.M., 2007. lme4 R package \(\langle\) http://cran.r-project.org \(\rangle \)
[4] Belenky, G.; Wesensten, N. J.; Thorne, D. R.; Thomas, M. L.; Sing, H. C.; Redmond, D. P.; Russo, M. B.; Balkin, T. J., Patterns of performance degradation and restoration during sleep restriction and subsequent recovery: a sleep dose-response study, J. Sleep Res., 12, 1-12 (2003)
[5] Balkin, T.J., Thorne, D., Sing, H., Thomas, M., Redmond, D., Wesensten, N., Russo, M., Williams, J., Hall, S., Belenky, G., 2000. Effects of sleep schedules on commercial motor vehicle driver performance. Report MC-00-133, National Technical Information Service, U.S. Department of Transportation, Springfield, VA.; Balkin, T.J., Thorne, D., Sing, H., Thomas, M., Redmond, D., Wesensten, N., Russo, M., Williams, J., Hall, S., Belenky, G., 2000. Effects of sleep schedules on commercial motor vehicle driver performance. Report MC-00-133, National Technical Information Service, U.S. Department of Transportation, Springfield, VA.
[6] Balkin, T. J.; Bliese, P. D.; Belenky, G.; Sing, H.; Thorne, D. R.; Thomas, M.; Redmond, D. P.; Russo, M.; Wesensten, N. J., Comparative utility of instruments for monitoring sleepiness-related performance decrements in the operational environment, J. Sleep Res., 13, 219-227 (2004)
[7] Brooks, S. P.; Gelman, A., General methods for monitoring convergence of iterative simulations, J. Comput. Graph. Statist., 7, 434-455 (1998)
[8] Cepeda, E. C.; Gamerman, D., Bayesian modeling of variance heterogeneity in normal regression models, Braz. J. Probab. Statist., 14, 207-221 (2000) · Zbl 0983.62013
[9] Cepeda, E. C.; Gamerman, D., Bayesian modeling of joint regressions for the mean and covariance matrix, Biom. J., 46, 430-440 (2004) · Zbl 1442.62298
[10] Dempster, A. P.; Laird, N. M.; Rubin, D. B., Maximum likelihood from incomplete data via the EM algorithm (with discussion), J. R. Statist. Soc. Ser. B, 39, 1-38 (1977) · Zbl 0364.62022
[11] Dinges, D.; Powell, J., Micro-computer analysis of performance on a portable, simple visual RT task during sustained operations, Behav. Res. Methods, Instrum. Comput., 17, 652-655 (1985)
[12] Gelfand, A. E.; Smith, A. F.M., Sampling based approaches to calculate marginal densities, J. Am. Statist. Assoc., 85, 398-409 (1990) · Zbl 0702.62020
[13] Gelfand, A. E.; Smith, A. F.M.; Lee, T. M., Bayesian analysis of constrained parameter and truncated data problems using Gibbs sampling, J. Am. Statist. Assoc., 85, 523-532 (1992)
[14] Gelman, A.; Robert, G.; Gilks, W., Efficient Metropolis jumping rules, (Bernardo, J. M.; Berger, J. O.; Dawid, A. P.; Smith, A. F.M., Bayesian Statistics, vol. 5 (1996), Oxford University Press: Oxford University Press New York)
[15] Hastings, W. K., Monte Carlo sampling methods using Markov chains and their applications, Biometrika, 57, 97-109 (1970) · Zbl 0219.65008
[16] Ho, H. J.; Lin, T. I., Robust linear mixed models using the skew \(t\) distribution with application to schizophrenia data, Biom. J., 52, 449-469 (2010) · Zbl 1197.62055
[17] Kotz, S.; Nadarajah, S., Multivariate \(t\) Distributions and their Applications (2004), Cambridge University Press: Cambridge University Press New York · Zbl 1100.62059
[18] Lange, K. L.; Little, R. J.A.; Taylor, J. M.G., Robust statistical modeling using the \(t\) distribution, J. Am. Statist. Assoc., 84, 881-896 (1989)
[19] Laird, N. M.; Ware, J. H., Random effects models for longitudinal data, Biometrics, 38, 963-974 (1982) · Zbl 0512.62107
[20] Lin, T. I.; Lee, J. C., Bayesian analysis of hierarchical linear mixed modeling using the multivariate \(t\) distribution, J. Statist. Plann. Inference, 137, 484-495 (2007) · Zbl 1102.62026
[21] Lin, T. I.; Lee, J. C., Estimation and prediction in linear mixed models with skew normal random effects for longitudinal data, Statist. Med., 27, 1490-1507 (2008)
[22] Lin, T. I.; Wang, Y. J., A robust approach to joint modeling of mean and scale covariance for longitudinal data, J. Statist. Plann. Inference, 139, 3013-3026 (2009) · Zbl 1168.62082
[23] Liu, C.; Rubin, D. B., The ECME algorithm: a simple extension of EM and ECM with faster monotone convergence, Biometrika, 81, 633-648 (1994) · Zbl 0812.62028
[24] Liu, C.; Rubin, D. B., ML estimation of the \(t\) distribution using EM and its extensions, ECM and ECME, Statist. Sinica, 5, 19-39 (1995) · Zbl 0824.62047
[25] Liu, C. H.; Rubin, D. B., Ellipsoidally symmetric extensions of the general location model for mixed categorical and continuous data, Biometrika, 85, 673-688 (1998) · Zbl 0954.62071
[26] Meng, X. L.; Rubin, D. B., Maximum likelihood estimation via the ECM algorithm: a general framework, Biometrika, 80, 267-278 (1993) · Zbl 0778.62022
[27] Metropolis, N.; Rosenbluth, A. W.; Rosenbluth, M. N.; Teller, A. H.; Teller, E., Equation of state calculation by fast computing machines, J. Chem. Phys., 21, 1087-1092 (1953) · Zbl 1431.65006
[28] Pan, J.; MacKenzie, G., On modelling mean-covariance structures in longitudinal studies, Biometrika, 90, 239-244 (2003) · Zbl 1039.62068
[29] Pinheiro, J. C.; Liu, C. H.; Wu, Y. N., Efficient algorithms for robust estimation in linear mixed-effects models using the multivariate \(t\) distribution, J. Comput. Graph. Statist., 10, 249-276 (2001)
[30] Pourahmadi, M., Joint mean-covariance models with applications to longitudinal data: unconstrained parameterisation, Biometrika, 86, 677-690 (1999) · Zbl 0949.62066
[31] Pourahmadi, M., Maximum likelihood estimation of generalised linear models for multivariate normal covariance matrix, Biometrika, 87, 425-435 (2000) · Zbl 0954.62091
[32] Spiegelhalter, D. J.; Best, N. G.; Carlin, B. P.; Linde, A. V.D., Bayesian measures of model complexity and fit, J. R. Statist. Soc. B, 64, 583-639 (2002) · Zbl 1067.62010
[33] Tanner, M. A.; Wong, W. H., The calculation of posterior distributions by data augmentation (with discussion), J. Am. Statist. Assoc., 82, 528-550 (1987) · Zbl 0619.62029
[34] Tierney, L., Markov chains for exploring posterior distributions, Ann. Statist., 22, 1701-1728 (1994) · Zbl 0829.62080
[35] Wakefield, J. C.; Smith, A. F.M.; Racine-Pooh, A.; Gelfand, A. E., Bayesian analysis of linear and non-linear model by using Gibbs sampler, Appl. Statist., 43, 201-221 (1994) · Zbl 0825.62410
[36] Wang, W.L., Fan, T.H. Estimation in multivariate \(t\); Wang, W.L., Fan, T.H. Estimation in multivariate \(t\) · Zbl 1225.62130
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.