×

Complex dynamics in the stretch-twist-fold flow. (English) Zbl 1204.37083

Summary: The system associated with fluid particle motions of the stretch-twist-fold (STF) flow has displayed rich and attractive dynamic properties. Detailed research on the system has been done in this work. By using a high-dimensional generalization of the Melnikov method, the explicit parametric conditions for the existence of periodic solutions in the system can be determined. Then, by using the new-KAM-like theorems for perturbations of a three-dimensional generalized Hamiltonian system, the criteria for the existence of invariant tori in the STF flow have been obtained. In addition, one new first integral is found. On the basis of it, nonexistence of chaos in the system at \(\alpha =0\) is rigorously proved. Nonexistence of homoclinic orbits is also proved in the system if some conditions hold. And an interesting phenomenon is found, where the unit circle in the \((y,z)\)-plane is filled with heteroclinic orbits of the system at \(\alpha =0\). The system with \(\alpha =0\) is also successfully reduced to a generalized Hamiltonian system, and further transformed to slowly varying oscillators.

MSC:

37N10 Dynamical systems in fluid mechanics, oceanography and meteorology
76R99 Diffusion and convection
Full Text: DOI

References:

[1] Vainshtein, S.I., Zel’dovich, Y.A.B.: Origin of magnetic fields in astrophysics (turbulent ”dynamo” mechanisms). Sov. Phys., Usp. 15, 159–172 (1972) · doi:10.1070/PU1972v015n02ABEH004960
[2] Moffatt, H.K., Proctor, M.R.E.: Topological constraints associated with fast dynamo action. J. Fluid Mech. 154, 493–507 (1985) · Zbl 0604.76092 · doi:10.1017/S002211208500163X
[3] Childress, S., Gilbert, A.D.: Stretch, Twist, Fold: The Fast Dynamo. Springer, Berlin/Heidelberg (1995) · Zbl 0841.76001
[4] Bajer, K.: Flow kinematics and magnetic equilibria, Ph.D. thesis, University of Cambridge, Cambridge (1989)
[5] Bajer, K.: Hamiltonian formulation of the equations of streamlines in three-dimensional steady flows. Chaos Solitons Fractals 4, 895–911 (1994) · Zbl 0823.76066 · doi:10.1016/0960-0779(94)90130-9
[6] Bajer, K., Moffatt, H.K.: On a class of steady confined stokes flows with chaotic streamlines. J. Fluid Mech. 212, 337–363 (1990) · Zbl 0692.76028 · doi:10.1017/S0022112090001999
[7] Bajer, K., Moffatt, H.K., Nex, F.H.: Steady confined stokes flows with chaotic streamlines. In: Moffatt, H.K., Tsinober, A. (eds.) Topological Fluid Mechanics: Proceedings of the IUTAM Symposium, pp. 459–466. Cambridge University Press, Cambridge (1990) · Zbl 0692.76028
[8] Vainshtein, S.I., Sagdeev, R.Z., Rosner, R., et al.: Fractal properties of the stretch-twist-fold magnetic dynamo. Phys. Rev. E 53, 4729–4744 (1996) · doi:10.1103/PhysRevE.53.4729
[9] Vainshtein, D.L., Vasiliev, A.A., Neishtadt, A.I.: Changes in the adiabatic invariant and streamline chaos in confined incompressible Stokes flow. Chaos 6, 67–77 (1996) · Zbl 1055.76523 · doi:10.1063/1.166151
[10] Vainshtein, S.I., Sagdeev, R.Z., Rosner, R.: Stretch-twist-fold and ABC nonlinear dynamos: restricted chaos. Phys. Rev. E 56, 1605–1622 (1997) · doi:10.1103/PhysRevE.56.1605
[11] Wiggins, S., Holmes, P.: Periodic orbits in slowly varying oscillators. SIAM J. Math. Anal. 18, 592–611 (1987) · Zbl 0619.34041 · doi:10.1137/0518046
[12] Li, Y., Yi, Y.F.: Persistence of invariant tori in generalized Hamiltonian systems. Ergod. Theory Dyn. Syst. 22, 1233–1261 (2002) · Zbl 1082.37059 · doi:10.1017/S0143385702000743
[13] Arnold, V.I.: Mathematical Methods of Classical Mechanics. Springer, New York (1978) · Zbl 0386.70001
[14] Klausmeier, C.A.: Floquet theory: a useful tool for understanding nonequilibrium dynamics. Theor. Ecol. 1, 153–161 (2008) · doi:10.1007/s12080-008-0016-2
[15] Escalona, J.L., Chamorro, R.: Stability analysis of vehicles on circular motions using multibody dynamics. Nonlinear Dyn. 53, 237–250 (2008) · Zbl 1170.70310 · doi:10.1007/s11071-007-9311-5
[16] Gao, P.Y.: Hamiltonian structure and first integrals for the Lotka–Volterra systems. Phys. Lett. A 273, 85–96 (2000) · Zbl 1115.34303 · doi:10.1016/S0375-9601(00)00454-0
[17] Silnikov, L.P.: A case of the existence of a countable number of periodic motions. Sov. Math. Dockl. 6, 163–166 (1965) · Zbl 0136.08202
[18] Silnikov, L.P.: A contribution of the problem of the structure of an extended neighborhood of rough equilibrium state of saddlefocus type. Math. USSR Sb. 10, 91–102 (1970) · Zbl 0216.11201 · doi:10.1070/SM1970v010n01ABEH001588
[19] Silva, C.P.: Silnikov theorem–a tutorial. IEEE Trans. Circuits Syst. I Fundam Theory 40, 675–682 (1993) · Zbl 0850.93352 · doi:10.1109/81.246142
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.