×

The Drazin inverse of the sum of two matrices and its applications. (English) Zbl 1204.15017

The Drazin inverse of a square matrix \(A\), denoted by \(A^D\) is the unique matrix \(X\) that satisfies \(A^{k+1}X = A^k\), \(XAX = X\), \(AX=XA\), where \(k\) is the index of \(A\).
M. P. Drazin [Am. Math. Mon. 65, 506–514 (1958; Zbl 0083.02901)] proved that \((P+Q)^D = P^D + Q^D\), whenever \(PQ=QP=0\). Several generalizations of this result have been provided over the years. The authors present two other extensions, one of these under the condition \(PQP=PQ^2=0\). The expressions of the Drazin inverse are too complicated to be included here. Using these results, the authors also derive results for the Drazin inverses of certain block matrices.

MSC:

15A09 Theory of matrix inversion and generalized inverses

Citations:

Zbl 0083.02901
Full Text: DOI

References:

[1] Ben-Israel, A.; Greville, T. N.E., Generalized Inverses: Theory and Applications (2003), Springer: Springer New York · Zbl 1026.15004
[2] Campbell, S. L.; Meyer, C. D., Generalized Inverse of Linear Transformations (1991), Dover: Dover New York · Zbl 0732.15003
[3] Hartwig, R. E.; Li, X.; Wei, Y., Representations for the Drazin inverse of a 2×2 block matrix, SIAM J. Matrix Anal. Appl., 27, 757-771 (2006) · Zbl 1100.15003
[4] Drazin, M. P., Pseudoinverses in associative rings and semigroups, Amer. Math. Monthly, 65, 506-514 (1958) · Zbl 0083.02901
[5] Hartwig, R. E.; Wang, G.; Wei, Y., Some additive results on Drazin inverse, Linear Algebra Appl., 322, 207-217 (2001) · Zbl 0967.15003
[6] Castro-González, N., Additive perturbation results for the Drazin inverse, Linear Algebra Appl., 397, 279-297 (2005) · Zbl 1071.15003
[7] Mosić, Dijana; Djordjević, Dragana S., Additive results for the Wg-Drazin inverse, Linear Algebra Appl., 432, 2847-2860 (2010) · Zbl 1189.47004
[8] Castro-González, N.; Dopazo, E.; Martínez-Serrano, M. F., On the Drazin inverse of the sum of two operators and its application to operator matrices, J. Math. Anal. Appl., 350, 207-215 (2008) · Zbl 1157.47001
[9] Castro-González, N.; Martínez-Serrano, M. F., Expressions for the \(g\)-Drazin inverse of additive perturbed elements in a Banach algebra, Linear Algebra Appl., 432, 1885-1895 (2010) · Zbl 1186.15004
[10] Deng, C., The Drazin inverses of sum and difference of idempotents, Linear Algebra Appl., 430, 1282-1291 (2009) · Zbl 1161.47001
[11] Liu, X.; Xu, L.; Yu, Y., The representations of the Drazin inverse of differences of two matrices, Appl. Math. Comput., 216, 3652-3661 (2010) · Zbl 1201.15001
[12] Deng, C.; Wei, Y., New additive results for the generalized Drazin inverse, J. Math. Anal. Appl., 370, 313-321 (2010) · Zbl 1197.47002
[13] Cvetković-Ilić, Dragana S., The generalized Drazin inverse with commutativity up to a factor in a Banach algebra, Linear Algebra Appl., 431, 783-791 (2009) · Zbl 1214.47005
[14] Castro-Gonzalez, N.; Robles, J.; Velez-Cerrada, J. Y., Characterizations of a class of matrices and perturbation of the Drazin inverse, SIAM J. Matrix Anal. Appl., 30, 882-897 (2008) · Zbl 1165.15004
[15] Castro-Gonzalez, N.; Velez-Cerrada, J. Y., On the perturbation of the group generalized inverse for a class of bounded operators in Banach spaces, J. Math. Anal. Appl., 34, 1213-1223 (2008) · Zbl 1139.47001
[16] Wei, Y.; Li, X.; Bu, F., A perturbation bound of the Drazin inverse of a matrix by separation of simple invariant subspaces, SIAM J. Matrix Anal. Appl., 27, 72-81 (2005) · Zbl 1093.15008
[17] Xu, Q.; Song, C.; Wei, Y., The stable perturbation of the Drazin inverse of the square matrices, SIAM J. Matrix Anal. Appl., 31, 1507-1520 (2009) · Zbl 1209.15009
[18] Martínez-Serrano, M. F.; Castro-González, N., On the Drazin inverse of block matrices and generalized Schur complement, Appl. Math. Comput., 215, 2733-2740 (2009) · Zbl 1204.15013
[19] Li, Xiezhang; Wei, Yimin, A note on the representations for the Drazin inverse of 2×2 block matrices, Linear Algebra Appl., 423, 332-338 (2007) · Zbl 1121.15008
[20] Djordjević, D. S.; Stanimirović, P. S., On the generalized Drazin inverse and generalized resolvent, Czechoslovak Math. J., 51, 126, 617-634 (2001) · Zbl 1079.47501
[21] Miao, J., Results of the Drazin inverse of block matrices, J. Shanghai Normal Univ., 18, 25-31 (1989), (in Chinese)
[22] Wei, Y., Expressions for the Drazin inverse of a 2×2 block matrix, Linear Multilinear Algebra, 45, 131-146 (1998) · Zbl 0984.15004
[23] Castro Gonzalez, N.; Dopazo, E.; Robles, J., Formulas for the Drazin inverse of special block matrices, Appl. Math. Comput., 174, 252-270 (2006) · Zbl 1097.15005
[24] Meyer, C. D.; Rose, N. J., The index and the Drazin inverse of block triangular matrices, SIAM J. Appl. Math., 33, 1-7 (1977) · Zbl 0355.15009
[25] Cvetković-Ilić, Dragana S., A note on the representation for the Drazin inverse of 2×2 block matrices, Linear Algebra Appl., 429, 242-248 (2008) · Zbl 1148.15001
[26] Castro-González, N.; Martínez-Serrano, M. F., Drazin inverse of partitioned matrices in terms of Banachiewicz-Schur forms, Linear Algebra Appl., 432, 1691-1702 (2010) · Zbl 1187.15003
[27] Cvetković-Ilić, Dragana S.; Chen, J.; Xu, Z., Explicit representations of the Drazin inverse of block matrix and modified matrix, Linear Multilinear Algebra, 57, 355-364 (2009) · Zbl 1176.15006
[28] Deng, C., A note on the Drazin inverses with Banachiewicz-Schur forms, Appl. Math. Comput., 213, 230-234 (2009) · Zbl 1182.47001
[29] Deng, C.; Wei, Y., A note on the Drazin inverse of an anti-triangular matrix, Linear Algebra Appl., 431, 1910-1922 (2009) · Zbl 1177.15003
[30] Deng, C.; Cvetkovic-Ilic, Dragana S.; Wei, Y., Some results on the generalized Drazin inverse of operator matrices, Linear Multilinear Algebra, 58, 503-521 (2010) · Zbl 1196.15009
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.