×

Arithmetic progressions in the solution sets of norm form equations. (English) Zbl 1204.11064

Let \(K\) be an algebraic number field of degree \(k\), and let \(\alpha_1,\ldots,\alpha_n\) be linearly independent elements of \(K\) over \(\mathbb Q\). Let \(m\) be a nonzero integer and consider the norm form equation \[ N_{K/\mathbb Q}(x_1\alpha_1+\dots+x_n\alpha_n)=m \] in integers \(x_1,\ldots,x_n\). Let \(H\) denote the solution set of the equation above. Several arithmetic properties of the elements of \(H\) were studied by Everest, Győry, Mignotte and Shorey.
In this paper the authors are concerned with arithmetic progressions in \(H\). Arrange the elements of \(H\) in an \(|H|\times n\) array \(\mathcal H\). Two natural questions appeared about arithmetical progressions. The “horizontal” one: do there infinitely many rows of \(H\) exist which form arithmetic progressions; and “vertical” one: do arbitrary long arithmetic progressions in some column of \(\mathcal H\) exist?
The “horizontal” problem was treated by Bérczes, Pethő and later Bérczes, Pethő, Ziegler, Bazsó computed horizontal solutions. The main goal of this paper is to generalize the result of Pethő and Ziegler to arbitrary norm form equations.
The authors prove that the length of any arithmetic progressions in \(H\) is bounded. Their next theorem shows that in general if \(H\) contains algebraic arithmetic progressions at all, then it contains infinitely many. Moreover, they generalize the following result (Newman): the length of arithmetic progressions consisting of units of an algebraic number field of degree \(k\) is at most \(k\).

MSC:

11D57 Multiplicative and norm form equations
11D45 Counting solutions of Diophantine equations
11B25 Arithmetic progressions
Full Text: DOI

References:

[1] N.C. Ankeny, R. Brauer and S. Chowla, A note on the class-numbers of algebraic number fields , Amer. J. Math. 78 (1956), 51-61. JSTOR: · Zbl 0074.26502 · doi:10.2307/2372483
[2] A. Bazsó, Further computational experiences on norm form equations with solutions forming arithmetic progressions , Publ. Math. Debrecen 71 (2007), 489-497. · Zbl 1164.11019
[3] A. Bérczes and K. Győry, On the number of solutions of decomposable polynomial equations , Acta Arith. 101 (2002), 171-187. · Zbl 1006.11016 · doi:10.4064/aa101-2-8
[4] A. Bérczes and A. Pethő, On norm form equations with solutions forming arithmetic progressions , Publ. Math. Debrecen 65 (2004), 281-290. · Zbl 1072.11026
[5] ——–, Computational experiences on norm form equations with solutions forming arithmetic progressions , Glasnik Math. 41 (2006), 1-8. · Zbl 1124.11020 · doi:10.3336/gm.41.1.01
[6] A. Bérczes, A. Pethő and V. Ziegler, Parameterized norm form equations with arithmetic progressions , J. Symbolic Comput. 41 (2006), 790-810. · Zbl 1201.11039 · doi:10.1016/j.jsc.2006.03.001
[7] A. Dujella, A. Pethő and P. Tadić, On arithmetic progressions on Pellian equations , Acta Math. Hungar. 120 (2008), 29-38. · Zbl 1174.11033 · doi:10.1007/s10474-007-7087-1
[8] G. Everest and K. Győry, On some arithmetical properties of solutions of decomposable form equations , Math. Proc. Cambridge Philos. Soc. 139 (2005), 27-40. · Zbl 1090.11020 · doi:10.1017/S0305004104008230
[9] J.-H. Evertse and K. Győry, The number of families of solutions of decomposable form equations , Acta Arith. 80 (1997), 367-394. · Zbl 0886.11015
[10] J.-H. Evertse, H.P. Schlickewei and W M. Schmidt, Linear equations in variables which lie in a multiplicative group , Annals Math. 155 (2002), 807-836. JSTOR: · Zbl 1026.11038 · doi:10.2307/3062133
[11] K. Győry, M. Mignotte and T.N. Shorey, On some arithmetical properties of weighted sums of \(S\)-units , Math. Pannon. 1 (1990), 25-43. · Zbl 0738.11034
[12] L. Hajdu, Arithmetic progressions in linear combinations of \(S\)-units , Period. Math. Hungar. 54 (2007), 175-181. · Zbl 1174.11039
[13] F. Halter-Koch, Unabhängige Einheitensysteme für eine allgemeine Klasse algebraischer Zahlkörper , Abh. Math. Sem. Univ. Hamburg 43 (1975), 85-91. · Zbl 0309.12005 · doi:10.1007/BF02995938
[14] F. Halter-Koch, G. Lettl, A. Pethő and R. Tichy, Thue equations associated with Ankeny-Brauer-Chowla number fields , J. London Math. Soc. 60 (1999), 1-20. · Zbl 0965.11009 · doi:10.1112/S0024610799007474
[15] M. Jarden and W. Narkiewicz, On sums of units , Monatsh. Math. 150 (2007), 327-332. · Zbl 1121.12002 · doi:10.1007/s00605-006-0402-z
[16] M. Newman, Units in arithmetic progression in an algebraic number field , Proc. Amer. Math. Soc. 43 (1974), 266-268. JSTOR: · Zbl 0285.12011 · doi:10.2307/2038874
[17] ——–, Consecutive units , Proc. Amer. Math. Soc. 108 (1990), 303-306. · Zbl 0701.11055 · doi:10.2307/2048276
[18] A. Pethő and V. Ziegler, Arithmetic progressions on Pell equations , J. Number Theory 128 (2008), 1389-1409. · Zbl 1142.11016 · doi:10.1016/j.jnt.2008.01.003
[19] W.M. Schmidt, Norm form equations , Annals Math. 96 (1972), 526-551. JSTOR: · Zbl 0226.10024 · doi:10.2307/1970824
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.