×

An improved sharp interface method for viscoelastic and viscous two-phase flows. (English) Zbl 1203.76120

Summary: We introduce a robust method for computing viscous and viscoelastic two-phase bubble and drop motions. Our method utilizes a coupled level-set and volume-of-fluid technique for updating and representing the air-water interface. Our method introduces a novel approach for treating the viscous coupling terms at the air-water interface; these improvements result in improved stability for computing two-phase bubble formation solutions. We also present an improved, “positive-preserving” discretization technique for updating the configuration tensor for viscoelastic flows, in the context of computing two-phase bubble and drop motion.

MSC:

76M25 Other numerical methods (fluid mechanics) (MSC2010)
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
76A10 Viscoelastic fluids
76T10 Liquid-gas two-phase flows, bubbly flows
Full Text: DOI

References:

[1] Sussman, M., Smith, K.M., Hussaini, M.Y., Ohta, M., Zhi-Wei, R.: A sharp interface method for incompressible two-phase flows. J. Comput. Phys. 221(2), 469–505 (2007) · Zbl 1194.76219 · doi:10.1016/j.jcp.2006.06.020
[2] Jimenez, E., Sussman, M., Ohta, M.: A computational study of bubble motion in Newtonian and viscoelastic fluids. Fluid Dyn. Mater. Process. 1(2), 97–108 (2005) · Zbl 1232.76005
[3] Sussman, M., Ohta, M.: Improvements for calculating two-phase bubble and drop motion using an adaptive sharp interface method. Fluid Dyn. Mater. Process. 3(1), 21–36 (2007) · Zbl 1153.76436
[4] Kang, M., Fedkiw, R., Liu, X.-D.: A boundary condition capturing method for multiphase incompressible flow. J. Sci. Comput. 15 (2000) · Zbl 1049.76046
[5] Fedkiw, R.P., Aslam, T., Merriman, B., Osher, S.: A non-oscillatory Eulerian approach to interfaces in multimaterial flows (the Ghost fluid method). J. Comput. Phys. 152(2), 457–492 (1999) · Zbl 0957.76052 · doi:10.1006/jcph.1999.6236
[6] Liu, X.-D., Fedkiw, R.P., Kang, M.: A boundary condition capturing method for Poisson’s equation on irregular domains. J. Comput. Phys. 160(1), 151–178 (2000) · Zbl 0958.65105 · doi:10.1006/jcph.2000.6444
[7] Li, J., Renardy, Y.Y., Renardy, M.: Numerical simulation of breakup of a viscous drop in simple shear flow through a volume-of-fluid method. Phys. Fluids 12(2), 269–282 (2000) · Zbl 1149.76454 · doi:10.1063/1.870305
[8] Hong, J.-M., Shinar, T., Kang, M., Fedkiw, R.: On boundary condition capturing for multiphase interfaces. J. Sci. Comput. 31, 99–125 (2007) · Zbl 1151.76534 · doi:10.1007/s10915-006-9120-x
[9] Rasmussen, N., Enright, D., Nguyen, D., Marino, S., Sumner, N., Geiger, W., Hoon, S., Fedkiw, R.: Directable photorealistic liquids. In: Eurographics/ACM SIGGRAPH Symposium on Computer Animation, 2004
[10] Yu, J.-D., Sakai, S., Sethian, J.A.: Two-phase viscoelastic jetting. J. Comput. Phys. 220(2), 568–585 (2007) · Zbl 1106.76050 · doi:10.1016/j.jcp.2006.05.020
[11] Pillapakkam, S.B., Singh, P.: A level-set method for computing solutions to viscoelastic two-phase flow. J. Comput. Phys. 174(2), 552–578 (2001) · Zbl 1056.76049 · doi:10.1006/jcph.2001.6927
[12] Goktekin, T.G., Bargteil, A.W., O’Brien, J.F.: Method for animating viscoelastic fluids. ACM Trans. Graph. 23(3), 463–468 (2004) · doi:10.1145/1015706.1015746
[13] Losasso, F., Shinar, T., Selle, A., Fedkiw, R.: Multiple interacting fluids. In: SIGGRAPH 2006. ACM TOG 25, pp. 812–819 (2006)
[14] Irving, G.: Methods for the physically based simulation of solids and fluids. Department of Computer Science, Stanford, Palo Alto (2007)
[15] Chilcott, M.D., Rallison, J.M.: Creeping flow of dilute polymer solutions past cylinders and spheres. J. Non-Newton. Fluid Mech. 29, 381–432 (1988) · Zbl 0669.76016 · doi:10.1016/0377-0257(88)85062-6
[16] Singh, P., Leal, L.G.: Finite-element simulation of the start-up problem for a viscoelastic fluid in an eccentric rotating cylinder geometry using a third-order upwind scheme. Theor. Comput. Fluid Dyn. V5(2), 107–137 (1993) · Zbl 0783.76054 · doi:10.1007/BF00311813
[17] Khismatullin, D., Renardy, Y., Renardy, M.: Development and implementation of VOF-PROST for 3D viscoelastic liquid-liquid simulations. J. Non-Newton. Fluid Mech. 140(1-3), 120–131 (2006) · Zbl 1125.76055 · doi:10.1016/j.jnnfm.2006.02.013
[18] Trebotich, D., Colella, P., Miller, G.H.: A stable and convergent scheme for viscoelastic flow in contraction channels. J. Comput. Phys. 205(1), 315–342 (2005) · Zbl 1087.76005 · doi:10.1016/j.jcp.2004.11.007
[19] Chang, Y., Hou, T., Merriman, B., Osher, S.: Eulerian capturing methods based on a level set formulation for incompressible fluid interfaces. J. Comput. Phys. 124, 449–464 (1996) · Zbl 0847.76048 · doi:10.1006/jcph.1996.0072
[20] Sussman, M., Puckett, E.G.: A coupled level set and volume-of-fluid method for computing 3D and axisymmetric incompressible two-phase flows. J. Comput. Phys. 162(2), 301–337 (2000) · Zbl 0977.76071 · doi:10.1006/jcph.2000.6537
[21] Tatebe, O.: The multigrid preconditioned conjugate gradient method. In: 6th Copper Mountain Conference on Multigrid Methods, Copper Mountain, Colorado, 1993 · Zbl 0939.65548
[22] Briggs, W.L., Henson, V.E., McCormick, S.: A Multigrid Tutorial, 2nd edn. SIAM, Philadelphia (2000)
[23] van Leer, B.: Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov’s method. J. Comput. Phys. 100, 25–37 (1979) · Zbl 1364.65223
[24] Sussman, M.: A second order coupled level set and volume-of-fluid method for computing growth and collapse of vapor bubbles. J. Comput. Phys. 187(1), 110–136 (2003) · Zbl 1047.76085 · doi:10.1016/S0021-9991(03)00087-1
[25] Sussman, M.: A parallelized, adaptive algorithm for multiphase flows in general geometries. Comput. Struct. 83, 435–444 (2005) · doi:10.1016/j.compstruc.2004.06.006
[26] Hadamard, J.: Movement permanent lent d’une sphere liquide et visqueuse dans un liquide visqueux. C. R. Acad. Sci. Paris 152, 1735–1738 (1911) · JFM 42.0813.01
[27] Rybczynski, W.: Uber die fortschreitende Bewegung einer flussigen Kugel in einem zahen Medium. Bull. Int. Acad. Sci. Cracovia Cl. Sci. Math. Natur, 40–46 (1911)
[28] Bhaga, D., Weber, M.E.: Bubbles in viscous liquids: shapes, wakes and velocities. J. Fluid Mech. Digit. Arch. 105(1), 61–85 (2006)
[29] Bright, A.: Minimum drop volume in liquid jet breakup. Chem. Eng. Res. Des. 63, 59–66 (1985)
[30] Richards, J.R., Lenhoff, A.M., Beris, A.N.: Dynamic breakup of liquid-liquid jets. Phys. Fluids 6, 2640–2655 (1994) · Zbl 0825.76164 · doi:10.1063/1.868154
[31] Hirt, C.W., Nichols, B.D.: Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys. 39(1), 201–225 (1981) · Zbl 0462.76020 · doi:10.1016/0021-9991(81)90145-5
[32] Brackbill, J.U., Kothe, D.B., Zemach, C.: A continuum method for modeling surface tension. J. Comput. Phys. 100(2), 335–354 (1992) · Zbl 0775.76110 · doi:10.1016/0021-9991(92)90240-Y
[33] Johnson, J.R.E., Dettre, R.H.: The wettability of low-energy liquid surfaces. J. Colloid Interface Sci. 21(6), 610–622 (1966) · doi:10.1016/0095-8522(66)90021-3
[34] Noh, D.S., Kang, I.S., Leal, L.G.: Numerical solutions for the deformation of a bubble rising in dilute polymeric fluids. Phys. Fluids A 5, 1315 (1993) · Zbl 0791.76005 · doi:10.1063/1.858568
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.