×

Level set equations on surfaces via the closest point method. (English) Zbl 1203.65143

Summary: Level set methods have been used in a great number of applications in \(\mathbb R^{2}\) and \(\mathbb R^{3}\) and it is natural to consider extending some of these methods to problems defined on surfaces embedded in \(\mathbb R^{3}\) or higher dimensions. In this paper we consider the treatment of level set equations on surfaces via a recent technique for solving partial differential equations (PDEs) on surfaces, the Closest Point Method [St. J. Ruuth and B. Merriman [J. Comput. Phys. 227, No. 3, 1943–1961 (2008; Zbl 1134.65058)]. Our main modification is to introduce a Weighted Essentially Non-Oscillatory (WENO) interpolation step into the Closest Point Method. This, in combination with standard WENO for Hamilton-Jacobi equations, gives high-order results (up to fifth-order) on a variety of smooth test problems including passive transport, normal flow and redistancing. The algorithms we propose are straightforward modifications of standard codes, are carried out in the embedding space in a well-defined band around the surface and retain the robustness of the level set method with respect to the self-intersection of interfaces. Numerous examples are provided to illustrate the flexibility of the method with respect to geometry.

MSC:

65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs

Citations:

Zbl 1134.65058

Software:

ToolboxLS; AIM@SHAPE
Full Text: DOI

References:

[1] Bertalmío, M., Cheng, L.-T., Osher, S., Sapiro, G.: Variational problems and partial differential equations on implicit surfaces. J. Comput. Phys. 174(2), 759–780 (2001) · Zbl 0991.65055 · doi:10.1006/jcph.2001.6937
[2] Cheng, L.-T., Tsai, R.: Redistancing by flow of the time dependent Eikonal equation (2008). Under review · Zbl 1317.76060
[3] Cheng, L.-T., Burchard, P., Merriman, B., Osher, S.: Motion of curves constrained on surfaces using a level-set approach. J. Comput. Phys. 175(2), 604–644 (2002) · Zbl 0996.65013 · doi:10.1006/jcph.2001.6960
[4] Crandall, M.G., Lions, P.-L.: Two approximations of solutions of Hamilton–Jacobi equations. Math. Comput. 43(167), 1–19 (1984) · Zbl 0557.65066 · doi:10.1090/S0025-5718-1984-0744921-8
[5] Fedkiw, R.P., Aslam, T., Merriman, B., Osher, S.: A non-oscillatory Eulerian approach to interfaces in multimaterial flows (the ghost fluid method). J. Comput. Phys. 152(2), 457–492 (1999) · Zbl 0957.76052 · doi:10.1006/jcph.1999.6236
[6] Greer, J.B.: An improvement of a recent Eulerian method for solving PDEs on general geometries. J. Sci. Comput. 29(3), 321–352 (2006) · Zbl 1122.65073 · doi:10.1007/s10915-005-9012-5
[7] Jiang, G.-S., Peng, D.: Weighted ENO schemes for Hamilton–Jacobi equations. SIAM J. Sci. Comput. 21(6), 2126–2143 (2000) · Zbl 0957.35014 · doi:10.1137/S106482759732455X
[8] Jiang, G.-S., Shu, C.-W.: Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126(1), 202–228 (1996) · Zbl 0877.65065 · doi:10.1006/jcph.1996.0130
[9] Laney, C.B.: Computational Gasdynamics. Cambridge University Press, Cambridge (1998) · Zbl 0947.76001
[10] Liu, X.-D., Osher, S., Chan, T.: Weighted essentially non-oscillatory schemes. J. Comput. Phys. 115(1), 200–212 (1994) · Zbl 0811.65076 · doi:10.1006/jcph.1994.1187
[11] Merriman, B., Ruuth, S.J.: Diffusion generated motion of curves on surfaces. J. Comput. Phys. 225(2), 2267–2282 (2007) · Zbl 1123.65011 · doi:10.1016/j.jcp.2007.03.034
[12] Merriman, B., Ruuth, S.J.: Embedding methods for the numerical solution of PDEs on manifolds. In preparation · Zbl 1134.65058
[13] Mitchell, I.: A toolbox of level set methods. Technical Report TR-2004-09, University of British Columbia Department of Computer Science, July 2004. http://www.cs.ubc.ca/\(\sim\)mitchell/ToolboxLS/Papers/Toolbox/toolboxLS-1.0.pdf
[14] Osher, S., Fedkiw, R.: Level Set Methods and Dynamic Implicit Surfaces. Applied Mathematical Sciences, vol. 153. Springer, New York (2003) · Zbl 1026.76001
[15] Osher, S., Sethian, J.A.: Fronts propagating with curvature-dependent speed: algorithms based on Hamilton–Jacobi formulations. J. Comput. Phys. 79(1), 12–49 (1988) · Zbl 0659.65132 · doi:10.1016/0021-9991(88)90002-2
[16] Osher, S., Shu, C.-W.: High-order essentially nonoscillatory schemes for Hamilton–Jacobi equations. SIAM J. Numer. Anal. 28(4), 907–922 (1991) · Zbl 0736.65066 · doi:10.1137/0728049
[17] Russo, G., Smereka, P.: A remark on computing distance functions. J. Comput. Phys. 163(1), 51–67 (2000) · Zbl 0964.65089 · doi:10.1006/jcph.2000.6553
[18] Ruuth, S.J., Merriman, B.: A simple embedding method for solving partial differential equations on surfaces. J. Comput. Phys. 227(3), 1943–1961 (2008) · Zbl 1134.65058 · doi:10.1016/j.jcp.2007.10.009
[19] Saboret, L., Attene, M., Alliez, P.: ”Laurent’s Hand”, the AIM@SHAPE shape repository (2007). http://shapes.aimatshape.net
[20] Sebastian, K., Shu, C.-W.: Multidomain WENO finite difference method with interpolation at subdomain interfaces. J. Sci. Comput. 19(1–3), 405–438 (2003) · Zbl 1081.76577 · doi:10.1023/A:1025372429380
[21] Sethian, J.A.: Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science. Cambridge Monographs on Applied and Computational Mathematics, vol. 3, 2nd edn. Cambridge University Press, Cambridge (1999) · Zbl 0973.76003
[22] Shu, C.-W.: Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws. Technical Report NASA CR-97-206253 ICASE Report No. 97-65, Institute for Computer Applications in Science and Engineering, November 1997
[23] Shu, C.-W., Osher, S.: Efficient implementation of essentially nonoscillatory shock-capturing schemes. J. Comput. Phys. 77(2), 439–471 (1988) · Zbl 0653.65072 · doi:10.1016/0021-9991(88)90177-5
[24] Wikipedia contributors: Klein bottle. Wikipedia, the free encyclopedia, http://en.wikipedia.org/w/index.php?title=Klein_bottle&oldid=133679151 (2007). Accessed 29 May 2007
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.