×

Multivariate plug-in bandwidth selection with unconstrained pilot bandwidth matrices. (English) Zbl 1203.62054

Summary: Multivariate kernel density estimation is an important technique in exploratory data analysis. Its utility relies on its ease of interpretation, especially by graphical means. The crucial factor which determines the performance of kernel density estimation is the bandwidth matrix selection. Research in finding optimal bandwidth matrices began with restricted parameterizations of the bandwidth matrix which mimic univariate selectors. Progressively these restrictions were relaxed to develop more flexible selectors. In this paper, we propose the first plug-in bandwidth selector with the unconstrained parameterizations of both the final and pilot selectors. Up till now, the development of unconstrained pilot selectors was hindered by the traditional vectorization of higher-order derivatives which lead to increasingly intractable matrix algebraic expressions. We resolve this by introducing an alternative vectorization which gives elegant and tractable expressions. This allows us to quantify the asymptotic and finite sample properties of unconstrained pilot selectors. For target densities with intricate structure (such as multimodality), our unconstrained selectors show the most improvement over the existing plug-in selectors.

MSC:

62G07 Density estimation
62H12 Estimation in multivariate analysis
62G20 Asymptotic properties of nonparametric inference

Software:

ks; KernSmooth; pyuvdata
Full Text: DOI

References:

[1] Bowman AW (1984) An alternative method of cross-validation for the smoothing of density estimates. Biometrika 71:353–360 · doi:10.1093/biomet/71.2.353
[2] Chacón JE (2009) Data-driven choice of the smoothing parametrization for kernel density estimators. Can J Stat 37:249–265 · Zbl 1176.62028 · doi:10.1002/cjs.10016
[3] Chacón JE, Duong T, Wand MP (2009) Asymptotics for general multivariate kernel density derivative estimators (submitted)
[4] Duong T (2009) ks: Kernel smoothing. R package version 1.6.5
[5] Duong T, Hazelton ML (2003) Plug-in bandwidth matrices for bivariate kernel density estimation. J Nonparametr Stat 15:17–30 · Zbl 1019.62032 · doi:10.1080/10485250306039
[6] Duong T, Hazelton ML (2005a) Convergence rates for unconstrained bandwidth matrix selectors in multivariate kernel density estimation. J Multivar Anal 93:417–433 · Zbl 1066.62059 · doi:10.1016/j.jmva.2004.04.004
[7] Duong T, Hazelton ML (2005b) Cross-validation bandwidth matrices for multivariate kernel density estimation. Scand J Stat 32:485–506 · Zbl 1089.62035 · doi:10.1111/j.1467-9469.2005.00445.x
[8] Hall P, Marron JS (1987) Estimation of integrated squared density derivatives. Stat Probab Lett 6:109–115 · Zbl 0628.62029 · doi:10.1016/0167-7152(87)90083-6
[9] Hall P, Marron JS, Park BU (1992) Smoothed cross-validation. Probab Theory Relat Fields 92:1–20 · Zbl 0742.62042 · doi:10.1007/BF01205233
[10] Henderson HV, Searle SR (1979) Vec and vech operators for matrices, with some uses in Jacobians and multivariate statistics. Can J Stat 7:65–81 · Zbl 0435.15022 · doi:10.2307/3315017
[11] Holmquist B (1985) The direct product permuting matrices. Linear Multilinear Algebra 17:117–141 · Zbl 0566.15012 · doi:10.1080/03081088508817648
[12] Holmquist B (1996a) The d-variate vector Hermite polynomial of order k. Linear Algebra Appl 237–238:155–190 · Zbl 0848.62027 · doi:10.1016/0024-3795(95)00595-1
[13] Holmquist B (1996b) Expectations of products of quadratic forms in normal variables. Stoch Anal Appl 14:149–164 · Zbl 0848.60019 · doi:10.1080/07362999608809431
[14] Jones MC, Sheather SJ (1991) Using nonstochastic terms to advantage in kernel-based estimation of integrated squared density derivatives. Stat Probab Lett 11:511–514 · Zbl 0724.62040 · doi:10.1016/0167-7152(91)90116-9
[15] Magnus JR, Neudecker H (1980) The elimination matrix: some lemmas and applications. SIAM J Algebra Discrete Methods 1:422–449 · Zbl 0497.15014 · doi:10.1137/0601049
[16] Magnus JR, Neudecker H (1999) Matrix differential calculus with applications in statistics and econometrics, revised edn. Wiley, Chichester · Zbl 0912.15003
[17] Meijer E (2005) Matrix algebra for higher order moments. Linear Algebra Appl 410:112–134 · Zbl 1080.62030 · doi:10.1016/j.laa.2005.02.040
[18] Park BU, Marron JS (1990) Comparison of data-driven bandwidth selectors. J Am Stat Assoc 85:66–72 · doi:10.2307/2289526
[19] Rosenblatt M (1956) Remarks on some nonparametric estimates of a density function. Ann Math Stat 27:832–837 · Zbl 0073.14602 · doi:10.1214/aoms/1177728190
[20] Rudemo M (1982) Empirical choice of histograms and kernel density estimators. Scand J Stat 9:65–78 · Zbl 0501.62028
[21] Sain SR, Baggerly KA, Scott DW (1994) Cross-validation of multivariate densities. J Am Stat Assoc 89:807–817 · Zbl 0805.62059 · doi:10.2307/2290906
[22] Schott JR (2003) Kronecker product permutation matrices and their application to moment matrices of the normal distribution. J Multivar Anal 87:177–190 · Zbl 1030.62043 · doi:10.1016/S0047-259X(03)00047-2
[23] Schott JR (2005) Matrix analysis for statics, 2nd edn. Wiley, New York
[24] Scott DW, Terrell GR (1987) Biased and unbiased cross-validation in density estimation. J Am Stat Assoc 82:1131–1146 · Zbl 0648.62037 · doi:10.2307/2289391
[25] Sheather SJ, Jones MC (1991) A reliable data-based bandwidth selection method for kernel density estimation. J R Stat Soc Ser B Stat Methodol 53:683–690 · Zbl 0800.62219
[26] Silverman BW (1986) Density estimation for statics and data analysis. Chapman & Hall, London
[27] Simonoff JS (1996) Smoothing methods in statics. Springer, Berlin
[28] Wand MP (1992) Error analysis for general multivariate kernel estimators. J Nonparametr Stat 2:2–15 · Zbl 1360.62141 · doi:10.1080/10485259208832538
[29] Wand MP, Jones MC (1993) Comparison of smoothing parameterizations in bivariate kernel density estimation. J Am Stat Assoc 88:520–528 · Zbl 0775.62105 · doi:10.2307/2290332
[30] Wand MP, Jones MC (1994) Multivariate plug-in bandwidth selection. Comput Stat 9:97–117 · Zbl 0937.62055
[31] Wand MP, Jones MC (1995) Kernel smoothing. Chapman & Hall, London · Zbl 0854.62043
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.