×

Continuity of optimal control costs and its application to weak KAM theory. (English) Zbl 1203.49041

The authors consider the optimal control cost:
\[ C_T(x,y)=\inf\int_0^T L(x(t),u(t)\,dt, \]
where the infimum is taken over all pairs \((x(.),u(.))\) satisfying the affine control system
\[ \dot{x}(t)=F(x(t),u(t)):=X_0(x(t))+ \sum_{i=1}^n u_i(t)X_i(x(t)) \]
and the boundary condition \(x(0)=x\) and \(x(T)=y\). \(X_0,X_1,\dots,X_n\) are smooth vector fields on a compact manifold \(M\) of dimension \(m\) and \(L:M\times \mathbb R^n\to\mathbb R\) a smooth function, called Lagrangian. Under some growth and convexity conditions on the Lagrangian, the authors show the continuity of the optimal control cost. As an application, they prove a version of the weak KAM theorem corresponding to the optimal control cost \(C_t\).

MSC:

49L25 Viscosity solutions to Hamilton-Jacobi equations in optimal control and differential games
37J40 Perturbations of finite-dimensional Hamiltonian systems, normal forms, small divisors, KAM theory, Arnol’d diffusion

References:

[1] Agrachev A.A., Sachkov Y.L.: Control Theory from the Geometric Viewpoint. Springer, Berlin (2004) · Zbl 1062.93001
[2] Bernard P., Buffoni B.: Optimal mass transportation and Mather theory. J. Eur. Math. Soc. 9(1), 85–121 (2007) · Zbl 1241.49025 · doi:10.4171/JEMS/74
[3] Bernard, P., Buffoni, B.: Weak KAM pairs and Monge–Kantorovich duality. Asymptotic analysis and singularities–elliptic and parabolic PDEs and related problems. Adv. Stud. Pure Math., 47-2, pp. 397–420. Mathematical Society of Japan, Tokyo (2007) · Zbl 1161.37043
[4] Brunovský P., Lobry C.: Controllabilité Bang-Bang, controllabilité différentiable, et perturbation des systèmes nonlinéaires. Ann. Mat. Pura Appl. 105, 93–119 (1975) · Zbl 0316.93007 · doi:10.1007/BF02414925
[5] Cannarsa P., Rifford L.: Semiconcavity results for optimal control problems admitting no singular minimizing controls. Ann. Inst. H. Poincaré Anal. Non Linéaire 25(4), 773–802 (2008) · Zbl 1145.49022 · doi:10.1016/j.anihpc.2007.07.005
[6] Cannarsa P., Sinestrari C.: Semiconcave Functions, Hamilton–Jacobi Equations, and Optimal Control. Birkhäuser, Boston (2004) · Zbl 1095.49003
[7] Evans L.C.: Partial Differential Equations. Graduate Studies in Mathematics, 19. American Mathematical Society, Providence (1998) · Zbl 0902.35002
[8] Fathi A.: Théorme KAM faible et theéorie de Mather sur les systèmes lagrangiens. C. R. Acad. Sci. Paris Sér. I Math. 324(9), 1043–1046 (1997) · Zbl 0885.58022
[9] Fathi, A.: The Weak KAM Theorem in Lagrangian Dynamics, 10th prelimiary version
[10] Gomes D.: Hamilton–Jacobi methods for vakonomic mechanics. NoDEA Nonlinear Differ. Equ. Appl. 14(3–4), 233–257 (2007) · Zbl 1135.37327 · doi:10.1007/s00030-007-5012-5
[11] Kantorovich L.: On the translocation of masses. C.R. Doklady Acad. Sci. URSS N.S. 37, 199–201 (1942) · Zbl 0061.09705
[12] Lions, P.-L., Papanicolaou, G., Varadhan, S.R.S.: Homogenization of Hamilton–Jacobi equation, unpublished preprint (1987)
[13] Montgomery R.: A Tour of Subriemannian Geometries, Their Geodesics and Applications. Mathematical Surveys and Monographs, 91. American Mathematical Society, Providence (2002) · Zbl 1044.53022
[14] Villani C.: Topics in Mass Transportation. American Mathematical Society, Providence (2003) · Zbl 1106.90001
[15] Villani C.: Optimal Transport: Old and New, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 338. Springer, Berlin (2009)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.