×

Numerical modeling of crack formation in powder forming processes. (English) Zbl 1202.74152

Summary: This paper presents a constitutive model describing the mechanical behavior of metal powders during (uniaxial) cold die compaction processes, placing special emphasis on the modeling of cracks formed during the ejection stage. The constitutive relationships are derived within the general framework of rate-independent, isotropic, finite strain elastoplasticity. The yield condition is determined by three surfaces intersecting non-smoothly in stress space, namely, an elliptical cap and the classical Von Mises and Drucker-Prager yield surfaces. The distinct irreversible processes are described in terms of two internal variables: an internal hardening variable, associated with accumulated compressive (plastic) strains, and an internal softening variable, linked with accumulated (plastic) shear strains. Motivated by both numerical and physical reasons, a parabolic plastic potential function is introduced to characterize the plastic flow on the linear Drucker-Prager failure surface. A thermodynamically consistent calibration procedure is employed to relate the softening modulus to fracture energy values obtained experimentally on Distaloy AE powder specimens. The predictive capability of the constitutive model is checked by simulating three representative cases: a diametral compression test, the ejection of an over-densified thin cylindrical part and the compaction of an axially symmetric multilevel part in an advanced CNC press machine. These simulations demonstrate the ability of the model to detect evidence of macroscopic cracks, clarify and provide reasons for the formation of such cracks, and evaluate, at least \(qualitatively\), the influence of variations in the input variables on their propagation through the green compact.

MSC:

74R20 Anelastic fracture and damage
74C15 Large-strain, rate-independent theories of plasticity (including nonlinear plasticity)

References:

[1] De Saracibar, C. Agelet; Chiumenti, M.; Valverde, Q.; Cervera, M.: On the orthogonal subgrid scale pressure stabilization of finite deformation j2 plasticity, Computer methods in applied mechanics and engineering 195, 1224-1251 (2006) · Zbl 1175.74080 · doi:10.1016/j.cma.2005.04.007
[2] Belytschko, T.; Liu, W. K.; Moran, B.: Nonlinear finite elements for continua and structures, (2001) · Zbl 0959.74001
[3] Belytschko, T.; Mish, K.: Computability in non-linear solid mechanics, International journal for numerical methods in engineering 52, 3-21 (2001)
[4] Bicánic, N.; Pearce, C. J.: Computational aspects of a softening plasticity model for plain concrete, Mechanics of cohesive-frictional materials 1, No. 1, 75-94 (1998)
[5] Bier, W.; Hartmann, S.: A finite strain constitutive model for metal powder compaction using a unique and convex single surface yield function, European journal of mechanics 25, 1009-1030 (2006) · Zbl 1105.74008 · doi:10.1016/j.euromechsol.2006.01.002
[6] Brekelmans, W. A. M.; Janssen, J. D.; De Ven, A. A. F.V.: An Eulerian approach for die compaction processes, International journal for numerical methods in engineering 31, 509-524 (1991) · Zbl 0825.73983 · doi:10.1002/nme.1620310307
[7] Brewin, P.; Coube, O.; Doremus, P.; Tweed, J.: Modelling of powder die compaction, (2007)
[8] Brewin, P.; Federzoni, L.: Dienet: conclusions and achievements, Powder metallurgy 49, 8-10 (2006)
[9] Broek, D.: The practical use of fracture mechanics, (1988)
[10] Brown, S. B.; Weber, G. G. A.: A constitutive model for the compaction of metal powders, Modern developments in powder metallurgy 18, 465-476 (1988)
[11] Cante, J.C., 1995. Simulación numérica de procesos de compactación de pulvimateriales. Aplicación de técnicas de cálculo paralelo, PhD Thesis, Technical University of Cataluña, Barcelona (in Spanish).
[12] Cante, J. C.; Oliver, J.; González, C.; Calero, J. A.; Benítez, F.: On numerical simulation of powder compaction processes: powder transfer modelling and characterisation, Powder metallurgy 48, 85-92 (2005)
[13] Cervera, M.; Chiumenti, M.; De Saracibar, C. Agelet: Softening, localization and stabilization: capture of discontinuous solutions in j2 plasticity, International journal for numerical and analytical methods in geomechanics 28, 373-393 (2004) · Zbl 1071.74050 · doi:10.1002/nag.341
[14] Chtourou, H.; Gakwaya, A.; Guillot, M.: Modeling of the metal powder compaction process using the cap model. Part II: Numerical implementation and practical applications, International journal of solids and structures 39, 1077-1096 (2002) · Zbl 0991.74506
[15] Chtourou, H.; Guillota, M.; Gakwaya, A.: Modeling of the metal powder compaction process using the cap model. Part I: Experimental material characterization and validation, International journal of solids and structures 39, 1059-1075 (2002) · Zbl 0991.74506 · doi:10.1016/S0020-7683(01)00255-4
[16] Cocks, A. C. F.; Sinka, I. C.: Constitutive modelling of powder compaction I. Theoretical concepts, Mechanics of materials 39, 392-403 (2006)
[17] Coube, O., 1998. Modelling and numerical simulation of powder die compaction with consideration of cracking, PhD Thesis, University Pierre et Marie Curie, Paris VI, Paris.
[18] Coube, O.; Riedel, H.: Numerical simulation of metal powder die compaction with special consideration of cracking, Powder metallurgy 43, 123-131 (2000)
[19] Crisfield, M. A.: Non-linear finite element analysis of solids and structures, Essentials 1 (1991) · Zbl 0809.73005
[20] Cunningham, J.C., 2005. Experimental studies and modeling of the roller compaction of pharmaceutical powders, PhD Thesis, Drexel University.
[21] De Borst, R.: Some recent issues in computational failure mechanics, International journal for numerical methods in engineering 52, 63-95 (2001)
[22] Doremus, P.; Toussaint, F.; Alvain, O.: Simple tests and standard procedure for the characterization of Green compacted powder, Recent developments in computer modeling of powder metallurgy processes, 277-285 (2001)
[23] Duxbury, P.; Li, X.: Development of elasto-plastic material models in a natural coordinate system, Computer methods in applied mechanics and engineering 135, 283-306 (1996) · Zbl 0890.73020 · doi:10.1016/0045-7825(95)00950-7
[24] Erhart, T.; Wall, W. A.; Ramm, E.: A robust computational approach for dry powders under quasi-static and transient impact loadings, Computer methods in applied mechanics and engineering 194, 4115-4134 (2005) · Zbl 1151.74328 · doi:10.1016/j.cma.2004.10.007
[25] Etse, G.; Willam, K. J.: A fracture-energy based constitutive formulation for inelastic behavior of plain concrete, Journal of engineering mechanics 120, 1983-2011 (1994)
[26] Federzoni, L.; Riedel, H.; Coube, O.; Oldenburg, M.; Gethin, D.; Mosbah, P.; Virta, J.; Martikainen, H.; Frachon, A.; Doremus, P.: State of the art review: comparison of computer models representing powder compaction process, Powder metallurgy 42, No. 4, 301-311 (1999)
[27] Fleck, N. A.: On the cold compaction of powders, Journal of the mechanics and physics of solids 43, 1409-1431 (1995) · Zbl 0921.73125 · doi:10.1016/0022-5096(95)00039-L
[28] Grassl, P.; Jiràsek, M.: Damage-plastic model for concrete failure, International journal of solids and structures 43, 7166-7196 (2006) · Zbl 1120.74777 · doi:10.1016/j.ijsolstr.2006.06.032
[29] Hartmann, S.; Oliver, J.; Cante, J. C.; Weyler, R.; Hernández, J. A.: A contact domain method for large deformation frictional contact problems. Part 2: numerical aspects, Computer methods in applied mechanics and engineering 198, 2607-2631 (2009) · Zbl 1228.74054 · doi:10.1016/j.cma.2009.03.009
[30] Hartmann, S.; Weyler, R.; Oliver, J.; Cante, J. C.; Hernández, J. A.: A 3D frictionless contact domain method for large deformation problems, Computer modeling in engineering & sciences 55, 211-270 (2010) · Zbl 1228.74054
[31] Hearn, E. J.: Mechanics of materials I, (2000)
[32] Hernández, J., 2009. Numerical modeling of crack formation in powder compaction based manufacturing problems, PhD Thesis, Technical University of Catalonia, Barcelona.
[33] Jonsén, P.; Häggblad, H.: Fracture energy based constitutive models for tensile fracture of metal powder compacts, International journal of solids and structures 44, 6398-6411 (2007) · Zbl 1166.74423 · doi:10.1016/j.ijsolstr.2007.02.030
[34] Jonsén, P.; Häggblad, H. -A.; Sommer, K.: Tensile strength and fracture energy of pressed metal powder by diametral compression test, Powder technology 176, 148-155 (2007)
[35] Khan, A. S.; Huang, S.: Continuum theory of plasticity, (1995) · Zbl 0856.73002
[36] Kuhl, E.; Ramm, E.; Willam, K.: Failure analysis of elasto-plastic material models on diferent levels of observation, International journal of solids and structures 37, 7259-7280 (2000) · Zbl 0992.74064 · doi:10.1016/S0020-7683(00)00198-0
[37] Lewis, R. W.; Khoei, A. R.: Numerical analysis of strain localization in metal powder-forming processes, Internation journal for numerical methods in engineering 52, 489-501 (2001) · Zbl 1128.74334 · doi:10.1002/nme.303
[38] Lubliner, J.: Plasticity theory, (1990) · Zbl 0745.73006
[39] Mähler, L.; Runesson, K.: Constitutive modeling of cold compaction and sintering of hardmetal, Journal of engineering materials and technology 125, 191-199 (2003)
[40] Mcdonald, S.; Motazedian, F.; Cocks, A.; Withers, P.: Shear cracking in an al powder compact studied by X-ray microtomography, Materials science and engineering: A 508, No. 1 – 2, 64-70 (2009)
[41] Mosbah, P., 1995. Etude expérimentale et modélisation du comportement de poudres métalliques au cours du compactage en matrice fermée, PhD Thesis, Université Joseph Fourier-Grenoble I (in French).
[42] Mosler, J.; Meschke, G.: Embedded crack vs.smeared crack models: a comparison of elementwise discontinuous crack path approaches with emphasis on mesh bias, Computer methods in applied mechanics and engineering 193, 3351-3375 (2004) · Zbl 1060.74606 · doi:10.1016/j.cma.2003.09.022
[43] Oliver, J.: A consistent characteristic length for smeared cracking models, International journal for numerical methods in engineering 28, 461-474 (1989) · Zbl 0676.73066 · doi:10.1002/nme.1620280214
[44] Oliver, J.: Modelling strong discontinuities in solid mechanics via strain softening constitutive equations, Internation journal for numerical methods in engineering 39, 3575-3600 (1996) · Zbl 0888.73018 · doi:10.1002/(SICI)1097-0207(19961115)39:21<3575::AID-NME65>3.0.CO;2-E
[45] Oliver, J.: On the discrete constitutive models induced by strong discontinuity kinematics and continuum constitutive equations, International journal of solids and structures 37, 7207-7229 (2000) · Zbl 0994.74004 · doi:10.1016/S0020-7683(00)00196-7
[46] Oliver, J.; Cante, J. C.; Weyler, R.; González, C.; Hernández, J. A.: Particle finite element methods in solid mechanics, (2007)
[47] Oliver, J.; Hartmann, S.; Cante, J. C.; Weyler, R.; Hernández, J. A.: A contact domain method for large deformation frictional contact problems. Part 1: theoretical basis, Computer methods in applied mechanics and engineering 198, 2591-2606 (2009) · Zbl 1228.74055 · doi:10.1016/j.cma.2009.03.006
[48] Oliver, J.; Huespe, A. E.; Blanco, S.; Linero, D. L.: Stability and robustness issues in numerical modeling of material failure with the strong discontinuity approach, Computer methods in applied mechanics and engineering 195, 7093-7114 (2006) · Zbl 1331.74168
[49] Oliver, J.; Huespe, A. E.; Cante, J. C.: An implicit/explicit integration scheme to increase computability of non-linear material and contact/friction problems, Computer methods in applied mechanics and engineering 197, 1865-1889 (2008) · Zbl 1194.74507 · doi:10.1016/j.cma.2007.11.027
[50] Oliver, J.; Oller, S.; Cante, J. C.: A plasticity model for simulation of industrial powder compaction processes, Journal of solids and structures 33, 3161-3178 (1996) · Zbl 0900.73154 · doi:10.1016/0020-7683(95)00249-9
[51] Oller, S., 1998. Un modelo de daño continuo para materiales friccionales, PhD Thesis, Technical University of Cataluña, Barcelona (in Spanish).
[52] Pavier, E., 1998. Caracterisation du comportement d’une poudre de fer pour le procede de compression en matrice, PhD Thesis, L’Institut National Polytechnique de Grenoble.
[53] Pavier, E., Dorémus, P., 1996. Mechanical behavior of a lubricated iron powder. In: Powder Metallurgy PM96. Advances in Powder Metallurgy and Particulate Materials, vol. 6, pp. 27 – 40.
[54] Group, Pm Modnet Computer Modelling: Comparison of computer models representing powder compaction process, Powder metallurgy 42, 301-311 (1999)
[55] Regueiro, R. A.; Borja, R. I.: A finite element model of localized deformation in frictional materials taking a strong discontinuity approach, Finite elements in analysis and design 33, 283-315 (1999) · Zbl 0979.74072 · doi:10.1016/S0168-874X(99)00050-5
[56] Riera, M.D., 1999. Comportamiento elastoplástico de compactos pulvimetalúrgicos, PhD Thesis, Technical University of Cataluña, Barcelona.
[57] Rossi, R.; Alves, M. K.; Qureshi, H. A. A.: A model for the simulation of powder compaction processes, Journal of materials processing technology 182, 286-296 (2007)
[58] Simo, J. C.: Topics on the numerical analysis and simulation of plasticity, Handbook of numerical analysis (1999)
[59] Simo, J. C.; Hughes, T. J. R.: Computational inelasticity, (1998) · Zbl 0934.74003
[60] Sinka, I. C.; Cocks, A. C. F.: Constitutive modelling of powder compaction II. Evaluation of material data, Mechanics of materials 39, 404-416 (2007)
[61] Storåkers, B.; Fleck, N. A.; Mcmeeking, R. M.: The viscoplastic compaction of composite powders, Journal of mechanics and physics of solids 47, 785-815 (1999) · Zbl 0971.74025 · doi:10.1016/S0022-5096(98)00076-3
[62] Tahir, S. M.; Ariffin, A. K.: Fracture in metal powder compaction, International journal of solids and structures 43, 1528-1542 (2006) · Zbl 1120.74794 · doi:10.1016/j.ijsolstr.2005.10.010
[63] Timoshenko, S. P.; Goodier, J. N.: Theory of elasticity, (1970) · Zbl 0266.73008
[64] Tszeng, T. C.; Wu, W. T.: A study of the coefficients in yield functions modeling metal powder deformation, Acta metallurgica 44, 3543-3552 (1996)
[65] Vrech, S. M.; Etse, G.: Geometrical localization analysis of gradient-dependent parabolic Drucker-Prager elastoplasticity, International journal of plasticity 22, 943-964 (2006) · Zbl 1177.74086 · doi:10.1016/j.ijplas.2005.07.002
[66] Wanga, Q. Z.; Jiaa, X. M.; Koub, S. Q.; Zhangb, Z. X.; Lindqvistb, P. A.: The flattened Brazilian disc specimen used for testing elastic modulus, tensile strength and fracture toughness of brittle rocks: analytical and numerical results, International journal of rock mechanics and mining sciences 41, 245-253 (2003)
[67] Weyler, R., 2000. Simulación numérica de procesos de compactación y extrusión de materiales pulverulentos, PhD Thesis, Technical University of Cataluña, Barcelona (in Spanish).
[68] Zenger, D.; Cai, H.: Handbook of the common cracks in Green P/M compacts, (1997)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.