×

Estimates for solutions of a parameter-elliptic multi-order system of differential equations. (English) Zbl 1202.35077

The authors consider an elliptic system of partial differential equations with spectral parameter \(\lambda\):
\[ \begin{aligned} A(x,D) u(x)-\lambda u(x)= f(x)&\quad\text{in }\Omega,\\ B_j(x, D)u(x)= g_j(x)&\quad\text{on }\Gamma\quad\text{for }j= 1,\dots, M, \end{aligned} \]
where \(\Omega\) is a bounded set in \(\mathbb{R}^n\) with boundary \(\Gamma\). The notations are vectorial, in particular \(A(x,D)\) is a square matrix of operators \(A_{jk}(x,D)\) of different orers. Precise a-priori estimates are proved, under limited smoothness assumptions, generalizing existing results, cf. R. Denk and L. Volevich [Providence, RI: American Mathematical Society (AMS). Transl., Ser. 2, Am. Math. Soc. 206, 29–64 (2002; Zbl 1056.35058)].

MSC:

35J46 First-order elliptic systems
35J47 Second-order elliptic systems
35J48 Higher-order elliptic systems
35S15 Boundary value problems for PDEs with pseudodifferential operators
35B45 A priori estimates in context of PDEs

Citations:

Zbl 1056.35058
Full Text: DOI

References:

[1] Agmon S., Douglis R., Nirenberg L.: Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions II. Comm. Pure Appl. Math. 17, 35–92 (1964) · Zbl 0123.28706 · doi:10.1002/cpa.3160170104
[2] Agranovich M.S., Denk R., Faierman M.: Weakly smooth nonselfadjoint elliptic boundary problems In: Advances in partial differential equations: Spectral theory, microlocal analysis, singular manifolds. Math. Top. 14, 138–199 (1997) · Zbl 0932.35158
[3] Agranovich M.S., Vishik M.I.: Elliptic problems with a parameter and parabolic problems of general form. Russ. Math. Surveys 19, 53–157 (1964) · Zbl 0137.29602 · doi:10.1070/RM1964v019n03ABEH001149
[4] R. Denk, M. Faierman, and M. Möller: An elliptic boundary problem for a system involving a discontinuous weight. Manuscripta Math. 108 (2001), 289–317. · Zbl 1003.35049 · doi:10.1007/s002290200264
[5] R. Denk, R. Mennicken, and L. Volevich: The Newton polygon and elliptic problems with parameter. Math. Nachr. 192 (1998), 125–157. · Zbl 0917.47023 · doi:10.1002/mana.19981920108
[6] R. Denk and L. Volevich: Elliptic boundary value problems with large parameter for mixed order systems. Amer. Math. Soc. Transl.(2) 206 (2002), 29–64. · Zbl 1056.35058
[7] M. Faierman: Eigenvalue asymptotics for a boundary problem involving an elliptic system. Math. Nachr. 279 (2006), 1159–1184. · Zbl 1169.35020 · doi:10.1002/mana.200510415
[8] Grisvard P.: Elliptic problems in nonsmooth domains. Pitman, London (1992) · Zbl 0766.35001
[9] G. Grubb: Functional calculus of pseudodifferential boundary problems 2nd edn. Birkhäuser, Boston, 1996. · Zbl 0844.35002
[10] Grubb G., Kokholm N.J.: A global calculus of parameter-dependent pseudodifferential boundary problems in L p Sobolev spaces. Acta Math. 171, 1–100 (1993) · Zbl 0811.35176 · doi:10.1007/BF02392532
[11] Kozhevnikov A.N.: Spectral problems for pseudodifferential systems elliptic in the Douglis-Nirenberg sense, and their applications. Math. USSR Sobornik 21, 63–90 (1973) · Zbl 0288.35048 · doi:10.1070/SM1973v021n01ABEH002006
[12] A. N. Kozhevnikov: Parameter-ellipticity for mixed order boundary problems. C. R. Acad. Sci. Paris Sér. I Math. 324 (1997), 1361–1366. · Zbl 0879.35047
[13] Kozhevnikov A.N.: Parameter-ellipticity for mixed order systems in the sense of Petrovskii. Commun. Appl. Anal. 5, 277–291 (2001) · Zbl 1084.35510
[14] Triebel H.: Interpolation theory, function spaces, differential operators. North-Holland, Amsterdam (1978) · Zbl 0387.46032
[15] M. I. Vishik and L. A. Lyusternik: Regular degeneration and boundary layer for linear differential equations with small parameter. Amer. Math. Soc. Transl.(2) 20 (1962), 239–264. · Zbl 0122.32402
[16] Volevich L.R.: Solvability of boundary value problems for general elliptic systems. Amer. Math. Soc. Transl.(2) 67, 182–225 (1968) · Zbl 0177.37401
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.