×

Characterizations of optimal solution sets of convex infinite programs. (English) Zbl 1201.90158

The authors consider the convex infinite optimization problem
\[ \operatorname{Min} f(x) \;\text{ s.t }\;f_t(x) \leq 0,\;\forall t\in T \text{ and }x \in C, \tag{P} \]
where \(X\) is a locally convex Hausdorff topological vector space, \(f\), \(f_t: X \rightarrow\mathbb R \cup (+\infty)\), \(t \in T\), are proper, lower semi-continuous and convex functions, \(C\) is a nonempty, closed convex subset of \(X\), and \(T\) is an arbitrary index set. Several characterizations of the solution set of (P) are given together with the characterization of the solution set of (P) when a minimizing sequence (instead of a solution of (P)) is known. These results are also obtained for cone-constrained convex programs. They also obtain optimality condition for a semi-convex program with convex constraints and give characterizations of its solution set.
Reviewer: R. N. Kaul (Delhi)

MSC:

90C25 Convex programming
Full Text: DOI

References:

[1] Burachik RS, Jeyakumar V (2005) A new geometric condition for Fenchel’s duality in infinite dimensional spaces. Math Program Ser B 104:229–233 · Zbl 1093.90077 · doi:10.1007/s10107-005-0614-3
[2] Burke JV, Ferris M (1991) Characterization of solution sets of convex programs. Oper Res Lett 10:57–60 · Zbl 0719.90055 · doi:10.1016/0167-6377(91)90087-6
[3] Clarke FH (1983) Optimization and nonsmooth analysis. Willey-Interscience, New York · Zbl 0582.49001
[4] Clarke FH, Stern JS, Wolenski PR (1998) Nonsmooth analysis and control theory. Springer, Berlin
[5] Craven BD (1978) Mathematical programming and control theory. Chapman and Hall, London · Zbl 0431.90039
[6] Dinh N, Goberna MA, Lopez MA (2006a) From linear to convex systems: consistency, Farkas lemma and applications. J Convex Anal 13:113–133 · Zbl 1137.90684
[7] Dinh N, Jeyakumar V, Lee GM (2006b) Lagrange multiplier characterizations of solution sets of constrained pseudolinear optimization problems. Optimization 55:241–250 · Zbl 1124.90022 · doi:10.1080/02331930600662849
[8] Dinh N, Goberna MA, Lopez MA, Son TQ (2007) New Farkas-type constraint qualifications in convex infinite programming. ESAIM: Control Optim Calc Var 13:580–597 · Zbl 1126.90059 · doi:10.1051/cocv:2007027
[9] Jeyakumar V (1992) Infinite-dimensional convex programming with applications to constrained approximation. J Optim Theory Appl 75:569–586 · Zbl 0797.90076 · doi:10.1007/BF00940493
[10] Jeyakumar V (1997) Asymptotic dual conditions characterizing optimality for infinite convex programs. J Optim Theory Appl 93:153–165 · Zbl 0901.90158 · doi:10.1023/A:1022606002804
[11] Jeyakumar V, Yang XQ (1995) Characterizing the solution sets of pseudo-linear programs. J Optim Theory Appl 87:747–755 · Zbl 0840.90118 · doi:10.1007/BF02192142
[12] Jeyakumar V, Lee GM, Dinh N (2004) Lagrange multiplier conditions characterizing optimal solution sets of cone-constrained convex programs. J Optim Theory Appl 123:83–103 · Zbl 1114.90091 · doi:10.1023/B:JOTA.0000043992.38554.c8
[13] Jeyakumar V, Lee GM, Dinh N (2006) Characterizations of solution sets of convex vector minimization problems. Eur J Oper Res 174:1380–1395 · Zbl 1103.90090 · doi:10.1016/j.ejor.2005.05.007
[14] Mangasarian OL (1988) A simple characterization of solution sets of convex programs. Oper Res Lett 7:21–26 · Zbl 0653.90055 · doi:10.1016/0167-6377(88)90047-8
[15] Mifflin R (1977) Semismooth and semiconvex functions in constrained optimization. SIAM J Control Optim 15:959–972 · Zbl 0376.90081 · doi:10.1137/0315061
[16] Penot JP (2003) Characterization of solution sets of quasiconvex programs. J Optim Theory Appl 117:627–636 · Zbl 1043.90071 · doi:10.1023/A:1023905907248
[17] Zalinescu C (2002) Convex analysis in general vector spaces. World Scientific, Singapore
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.