×

Perfect teleportation between arbitrary split of six partites by a maximally genuinely entangled six-qubit state. (English) Zbl 1201.81030

Summary: We show that any \(S(S = 1, 2, 3, 4, 5, 6)\) persons can unite to teleport min\((S, 6 - S)\) qubits to the other \(6 - S\) persons if they a priori share a maximally genuinely entangled six-qubit state introduced by Borras et al. [A. Borras, A. R. Plastino, J. Batle, C. Zander, M. Casas and A. Plastino, J. Phys. A, Math. Theor. 40, No. 44, 13407–13421 (2007; Zbl 1128.81005)]. Also, explicit protocols for perfectly teleporting arbitrary one-qubit state, two-qubit state as well as three-qubit state between arbitrary split of six partites are constructed. Moreover, to fulfil the protocol, either the senders or the receivers can make local operations individually in distant places.

MSC:

81P45 Quantum information, communication, networks (quantum-theoretic aspects)
81P40 Quantum coherence, entanglement, quantum correlations

Citations:

Zbl 1128.81005
Full Text: DOI

References:

[1] Nielsen M. A., Quantum Computation and Quantum Information (2000) · Zbl 1049.81015
[2] DOI: 10.1103/PhysRevLett.70.1895 · Zbl 1051.81505 · doi:10.1103/PhysRevLett.70.1895
[3] DOI: 10.1016/j.physleta.2005.01.032 · Zbl 1135.81313 · doi:10.1016/j.physleta.2005.01.032
[4] DOI: 10.1103/PhysRevA.58.4373 · doi:10.1103/PhysRevA.58.4373
[5] DOI: 10.1103/PhysRevA.61.034301 · doi:10.1103/PhysRevA.61.034301
[6] DOI: 10.1016/S0375-9601(02)01383-X · Zbl 1001.81003 · doi:10.1016/S0375-9601(02)01383-X
[7] DOI: 10.1103/PhysRevA.62.012304 · doi:10.1103/PhysRevA.62.012304
[8] DOI: 10.1038/37539 · Zbl 1369.81006 · doi:10.1038/37539
[9] DOI: 10.1103/PhysRevLett.86.1370 · doi:10.1103/PhysRevLett.86.1370
[10] DOI: 10.1038/nature02570 · doi:10.1038/nature02570
[11] DOI: 10.1038/nphys417 · doi:10.1038/nphys417
[12] DOI: 10.1103/PhysRevA.58.4373 · doi:10.1103/PhysRevA.58.4373
[13] DOI: 10.1103/PhysRevA.58.4394 · doi:10.1103/PhysRevA.58.4394
[14] DOI: 10.1103/PhysRevA.61.022308 · doi:10.1103/PhysRevA.61.022308
[15] DOI: 10.1088/1367-2630/5/1/136 · doi:10.1088/1367-2630/5/1/136
[16] DOI: 10.1103/PhysRevA.74.062320 · doi:10.1103/PhysRevA.74.062320
[17] DOI: 10.1088/1751-8113/40/35/010 · Zbl 1123.81329 · doi:10.1088/1751-8113/40/35/010
[18] DOI: 10.1103/PhysRevA.71.032303 · doi:10.1103/PhysRevA.71.032303
[19] DOI: 10.1103/PhysRevA.62.022307 · doi:10.1103/PhysRevA.62.022307
[20] DOI: 10.1103/PhysRevA.64.014302 · doi:10.1103/PhysRevA.64.014302
[21] DOI: 10.1103/PhysRevA.72.022338 · doi:10.1103/PhysRevA.72.022338
[22] DOI: 10.1016/j.physleta.2005.04.055 · Zbl 1135.81312 · doi:10.1016/j.physleta.2005.04.055
[23] DOI: 10.1016/j.physleta.2007.07.017 · Zbl 1217.81032 · doi:10.1016/j.physleta.2007.07.017
[24] DOI: 10.1142/S0219749908003402 · Zbl 1151.81308 · doi:10.1142/S0219749908003402
[25] DOI: 10.1103/PhysRevA.66.052318 · doi:10.1103/PhysRevA.66.052318
[26] DOI: 10.1103/PhysRevLett.96.060502 · doi:10.1103/PhysRevLett.96.060502
[27] DOI: 10.1103/PhysRevA.74.032324 · doi:10.1103/PhysRevA.74.032324
[28] DOI: 10.1103/PhysRevA.75.052306 · doi:10.1103/PhysRevA.75.052306
[29] DOI: 10.1103/PhysRevA.77.032321 · doi:10.1103/PhysRevA.77.032321
[30] DOI: 10.1088/0305-4470/38/5/013 · Zbl 1062.81007 · doi:10.1088/0305-4470/38/5/013
[31] DOI: 10.1088/1751-8113/40/44/018 · Zbl 1128.81005 · doi:10.1088/1751-8113/40/44/018
[32] DOI: 10.1088/1751-8113/42/11/115303 · Zbl 1177.81023 · doi:10.1088/1751-8113/42/11/115303
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.