×

Classification of generalized multiresolution analyses. (English) Zbl 1201.42023

This paper establishes in Theorems 12 and 13 classification of GMRAs (generalized multiresolution analyses), both classical and those defined on abstract Hilbert spaces, by their multiplicity functions \(m\) in Definition 2 and matrix-valued filter functions \(H\) in Definition 4. Moreover, a construction procedure is described in Theorem 8 that produces an abstract GMRA with multiplicity function \(m\) and filter system \(H\). The classification results are then applied to many previously studied classical and abstract examples in Section 5. The interesting results in this paper deepen our understanding of GMRAs, which play the core role in wavelet analysis.
Reviewer: Bin Han (Edmonton)

MSC:

42C40 Nontrigonometric harmonic analysis involving wavelets and other special systems
42C15 General harmonic expansions, frames

References:

[1] Baggett, L. W.; Courter, J. E.; Merrill, K. D., The construction of wavelets from generalized conjugate mirror filters in \(L^2(R^n)\), Appl. Comput. Harmon. Anal., 13, 201-223 (2002) · Zbl 1027.42031
[2] Baggett, L. W.; Furst, V.; Merrill, K. D.; Packer, J. A., Generalized filters, the low-pass condition, and connections to multiresolution analysis, J. Funct. Anal., 257, 2760-2779 (2009) · Zbl 1183.42030
[3] Baggett, L. W.; Jorgensen, P. E.T.; Merrill, K. D.; Packer, J. A., Construction of Parseval wavelets from redundant filter systems, J. Math. Phys., 46 (2005), #083502, 28 pp · Zbl 1110.42007
[4] Baggett, L. W.; Larsen, N. S.; Merrill, K. D.; Packer, J. A.; Raeburn, I., Generalized multiresolution analyses with given multiplicity functions, J. Fourier Anal. Appl., 15, 616-633 (2009) · Zbl 1190.42016
[5] Baggett, L. W.; Larsen, N. S.; Packer, J. A.; Raeburn, I.; Ramsay, A., Direct limits, multiresolution analyses, and wavelets, J. Funct. Anal., 258, 8, 2714-2738 (2010) · Zbl 1202.42060
[6] Baggett, L. W.; Medina, H. A.; Merrill, K. D., Generalized multi-resolution analyses and a construction procedure for all wavelet sets in \(R^n\), J. Fourier Anal. Appl., 5, 563-573 (1999) · Zbl 0972.42021
[7] Baggett, L. W.; Merrill, K. D., Abstract harmonic analysis and wavelets in \(R^n\), (The Functional and Harmonic Analysis of Wavelets and Frames. The Functional and Harmonic Analysis of Wavelets and Frames, Contemp. Math., vol. 247 (1999), Amer. Math. Soc.: Amer. Math. Soc. Providence), 17-27 · Zbl 0957.42021
[8] Beals, R., Operators in function spaces which commute with multiplications, Duke Math. J., 35, 353-362 (1968) · Zbl 0174.17704
[9] Bildea, S.; Dutkay, D.; Picioroaga, G., MRA super-wavelets, New York J. Math., 11, 1-19 (2005) · Zbl 1079.42022
[10] Bownik, M.; Rzeszotnik, Z.; Speegle, D., A characterization of dimension functions of wavelets, Appl. Comput. Harmon. Anal., 10, 71-92 (2001) · Zbl 0979.42018
[11] Bratteli, O.; Jorgensen, P. E.T., Isometries, shifts, Cuntz algebras and multiresolution analyses of scale \(N\), Integral Equations Operator Theory, 28, 382-443 (1997) · Zbl 0897.46054
[12] Bratteli, O.; Jorgensen, P., Wavelets Through a Looking Glass (2002), Birkhäuser: Birkhäuser Boston/Basel/Berlin · Zbl 1012.42023
[13] Courter, J., Construction of dilation-\(d\) wavelets, (The Functional and Harmonic Analysis of Wavelets and Frames. The Functional and Harmonic Analysis of Wavelets and Frames, Contemp. Math., vol. 247 (1999), Amer. Math. Soc.: Amer. Math. Soc. Providence), 183-205 · Zbl 0960.42009
[14] D’Andrea, J.; Merrill, K. D.; Packer, J. A., Fractal wavelets of Dutkay-Jorgensen type for the Sierpinski gasket space, (Frames and Operator Theory in Analysis and Signal Processing. Frames and Operator Theory in Analysis and Signal Processing, Contemp. Math., vol. 451 (2008), Amer. Math. Soc.: Amer. Math. Soc. Providence), 69-88 · Zbl 1151.42314
[15] Daubechies, I., Ten Lectures on Wavelets, CBMS-NSF Lecture Notes, vol. 61 (1992), SIAM · Zbl 0776.42018
[16] Dutkay, D.; Jorgensen, P. E.T., Wavelets on fractals, Rev. Math. Iberoamericana, 22, 131-180 (2006) · Zbl 1104.42021
[17] Dutkay, D.; Jorgensen, P. E.T., Fourier series on fractals: a parallel with wavelet theory, (Radon Transforms, Geometry and Wavelets. Radon Transforms, Geometry and Wavelets, Contemp. Math., vol. 464 (2008), Amer. Math. Soc.: Amer. Math. Soc. Providence), 75-101, (English summary) · Zbl 1256.42048
[18] Jaffard, S.; Meyer, Y., Les ondelettes, (Harmonic Analysis and Partial Differential Equations. Harmonic Analysis and Partial Differential Equations, El Escorial, 1987. Harmonic Analysis and Partial Differential Equations. Harmonic Analysis and Partial Differential Equations, El Escorial, 1987, Lecture Notes in Math., vol. 1384 (1989), Springer: Springer Berlin), 182-192 · Zbl 0684.42018
[19] Larsen, N. S.; Raeburn, I., From filters to wavelets via direct limits, (Operator Theory, Operator Algebras and Applications. Operator Theory, Operator Algebras and Applications, Contemp. Math., vol. 414 (2006), Amer. Math. Soc.: Amer. Math. Soc. Providence), 35-40 · Zbl 1151.42317
[20] Lawton, W., Tight frames of compactly supported affine wavelets, J. Math. Phys., 31, 1898-1901 (1990) · Zbl 0708.46020
[21] Mackey, G. W., Induced representations of locally compact groups I, Ann. of Math., 55, 101-139 (1952) · Zbl 0046.11601
[22] Mallat, S. G., Multiresolution approximations and wavelet orthonormal bases of \(L^2(R)\), Trans. Amer. Math. Soc., 315, 69-87 (1989) · Zbl 0686.42018
[23] Meyer, Y., Wavelets and Operators, Cambridge Stud. Adv. Math., vol. 37 (1992), Cambridge University Press: Cambridge University Press Cambridge, England · Zbl 0776.42019
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.