×

Numerical semigroups: Apéry sets and Hilbert series. (English) Zbl 1200.20047

A numerical AA-semigroup \(S\) is defined as the semigroup generated by positive integers \(a,a+d,a+2d,\dots,a+kd,c\), assumed to be relatively prime. If \(g\) is the largest integer not in \(S\), then \(S\) is called symmetric if \(S\cup(S-g)\) equals the ring of integers.
The authors characterize symmetric AA-semigroups, and give an algorithm which permits the use of a formula due to the second author [J. Reine Angew. Math. 307/308, 431-440 (1979; Zbl 0395.10021)] to determine the Apéry set of \(S\) [R. Apéry, C. R. Acad. Sci., Paris 222, 1198-1200 (1946; Zbl 0061.35404)], hence also the corresponding Frobenius number.

MSC:

20M13 Arithmetic theory of semigroups
11D07 The Frobenius problem
20M14 Commutative semigroups
11D04 Linear Diophantine equations
Full Text: DOI

References:

[1] Apéry, R.: Sur les branches superlinéaires des courbes algébriques. C. R. Acad. Sci. Paris 222, 1198–1200 (1946) · Zbl 0061.35404
[2] Beck, M., Robins, S.: Computing the Continuos Discretely, UTM. Springer, New York (2007) · Zbl 1114.52013
[3] Brauer, A., Shockley, J.E.: On a problem of Frobenius. J. Reine Angew. Math. 211, 215–220 (1962) · Zbl 0108.04604
[4] Bresinsky, H.: On prime ideals with generic zero \(x_{i}=t^{n_{i}}\) . Proc. Am. Math. Soc. 47, 329–332 (1975) · Zbl 0296.13007
[5] Cheng, Y., Hwang, F.K.: Diameters of weighted double loop networks. J. Algorithms 9, 401–410 (1988) · Zbl 0648.05030 · doi:10.1016/0196-6774(88)90030-2
[6] Davison, J.L.: On the linear Diophantine problem of Frobenius. J. Number Theory 48, 353–363 (1994) · Zbl 0805.11025 · doi:10.1006/jnth.1994.1071
[7] Denham, G.: Short generating functions for some semigroup algebras. Electron. J. Comb. 10, #R36 (2003). 7 pp. (electronic) · Zbl 1023.05008
[8] Estrada, M., López, A.: A note on symmetric semigroups and almost arithmetic sequences. Commun. Algebra 22(10), 3903–3905 (1994) · Zbl 0832.20083 · doi:10.1080/00927879408825056
[9] Fel, L.G.: Frobenius problem for semigroups S(d 1,d 2,d 3). Funct. Anal. Other Math. 1, 119–157 (2006) · Zbl 1194.20058 · doi:10.1007/s11853-007-0009-5
[10] Fröberg, R., Gottlieb, C., Häggkvist, R.: On numerical semigroups. Semigroup Forum 35, 63–83 (1987) · Zbl 0614.10046 · doi:10.1007/BF02573091
[11] Greenberg, H.: Solution to a Diophantine equation for nonnegative integers. J. Algorithms 9(3), 343–353 (1988) · Zbl 0647.10015 · doi:10.1016/0196-6774(88)90025-9
[12] Herzog, J.: Generators and relations of Abelian semigroup rings. Manuscr. Math. 3, 175–193 (1970) · Zbl 0211.33801 · doi:10.1007/BF01273309
[13] Johnson, S.M.: A linear Diophantine problem. Can. J. Math. 12, 390–398 (1960) · Zbl 0096.02803 · doi:10.4153/CJM-1960-033-6
[14] Matthews, G.L.: On numerical semigroups generated by generalized arithmetic sequences. Commun. Algebra 32(9), 3459–3469 (2004) · Zbl 1070.20069 · doi:10.1081/AGB-120039623
[15] Matthews, G.L.: On integers nonrepresentable by a generalized arithmetic sequences. Integers 5(2), #A12 (2005). 6 pp. (electronic) · Zbl 1139.11301
[16] Morales, M.: Syzygies of monomial curves and a linear Diophantine problem of Frobenius. Internal report, Max Planck Institut für Mathematik, Bonn (1987)
[17] Morales, M.: Noetherian symbolic blow-ups. J. Algebra 140(1), 12–25 (1991) · Zbl 0738.13012 · doi:10.1016/0021-8693(91)90141-T
[18] Myerson, G.: On semi-regular finite continued fractions. Arch. Math. 48, 420–425 (1987) · Zbl 0596.10009 · doi:10.1007/BF01189635
[19] Patil, D.P., Roberts, L.G.: Hilbert functions of monomial curves. J. Pure Appl. Algebra 183(1–3), 275–292 (2003) · Zbl 1078.13509 · doi:10.1016/S0022-4049(03)00031-8
[20] Ramírez Alfonsín, J.L.: Complexity of the Frobenius problem. Combinatorica 16(1), 143–147 (1996) · Zbl 0847.68036 · doi:10.1007/BF01300131
[21] Ramírez Alfonsín, J.L.: The Diophantine Frobenius Problem. Oxford Lectures Series in Mathematics and its Applications, vol. 30. Oxford University Press, London (2005) · Zbl 1134.11012
[22] Roberts, J.B.: Note on linear forms. Proc. Am. Math. Soc. 7, 465–469 (1956) · Zbl 0071.03902 · doi:10.1090/S0002-9939-1956-0091961-5
[23] Rødseth, Ø.J., On a linear Diophantine problem of Frobenius. J. Reine Angew. Math. 301, 171–178 (1978) · Zbl 0374.10011 · doi:10.1515/crll.1978.301.171
[24] Rødseth, Ø.J., On a linear Diophantine problem of Frobenius II. J. Reine Angew. Math. 307/308, 431–440 (1979) · Zbl 0395.10021 · doi:10.1515/crll.1979.307-308.431
[25] Rødseth, Ø.J., Progression bases for finite cyclic groups. In: Chudnovsky, D.V., Chudnovsky, G.V., Nathanson, M.B. (eds.) Number Theory: New York Seminar 1991–1995, pp. 269–279. Springer, New York (1996)
[26] Rosales, J.C., García-Sánchez, P.A.: Numerical semigroups with embedding dimension three. Arch. Math. 83, 488–496 (2004) · Zbl 1058.20050 · doi:10.1007/s00013-004-1149-1
[27] Selmer, E.S.: On the linear Diophantine problem of Frobenius. J. Reine Angew. Math. 293/294, 1–17 (1977) · Zbl 0349.10009 · doi:10.1515/crll.1977.293-294.1
[28] Selmer, E.S., Beyer, Ø.: On the linear Diophantine problem of Frobenius in three variables. J. Reine Angew. Math. 301, 161–170 (1978) · Zbl 0374.10010
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.