×

Arithmetically Cohen-Macaulay bundles on complete intersection varieties of sufficiently high multidegree. (English) Zbl 1200.14082

Recall that if \((X,\mathcal{O}_X(1))\) is a polarized projective variety, a vector bundle \(E\) is said to be Arithmetically Cohen-Macaulay (ACM) with respect to this polarization if \(H^i(E(d))=0\) for all \(d\) and \(0<i<\dim X\). This article generalizes [N. Mohan Kumar, A. P. Rao and G. V. Ravindra, Comment. Math. Helv. 82, No. 4, 829–843 (2007; Zbl 1131.14047) and Int. Math. Res. Not. 2007, No. 8, Article ID rnm025, 10 p. (2007; Zbl 1132.14040)] by the reviewer, Rao and one of the authors. In the above mentioned articles it was proved that any rank two ACM bundle on a general hypersurface in projective space is a direct sum of line bundles if either dimension is four and degree is at least 3 or the dimension is three and degree is at least 6. The remaining dimensions were well understood earlier. The article under review proves similar theorems when the varieties are general complete intersections of sufficiently large multidegree. The methods are quite different and appeals to Griffith’s definition of normal functions and its infinitesimal versions [P. A. Griffiths, Ann. Math. (2) 90, 460–495, 496–541 (1969; Zbl 0215.08103); J. Carlson, M. Green, P. Griffiths and J. Harris, Compos. Math. 50, 109–205 (1983; Zbl 0531.14006)]. One of the crucial facts used in the earlier papers is that for any ACM bundle on the projective space, its exterior powers are also ACM, since by Horrock’s criterion, such bundles are direct sum of line bundles and hence so are their exterior powers. This fact is unavilable on more general varieties and thus the complete intersection varieties can not be studied as successive hypersurfaces in any obvious way.

MSC:

14J60 Vector bundles on surfaces and higher-dimensional varieties, and their moduli
14M05 Varieties defined by ring conditions (factorial, Cohen-Macaulay, seminormal)

References:

[1] Beauville A.: Determinantal hypersurfaces. Dedicated to William Fulton on the occasion of his 60th birthday. Michigan Math. J. 48, 39–64 (2000) · Zbl 1076.14534 · doi:10.1307/mmj/1030132707
[2] Buchweitz R.-O., Greuel G.-M., Schreyer F.-O.: Cohen-Macaulay modules on hypersurface singularities. II. Invent. Math. 88(1), 165–182 (1987) · Zbl 0617.14034 · doi:10.1007/BF01405096
[3] Carlson J., Green M., Griffiths P., Harris J.: Infinitesimal variations of Hodge structure. I. Compos. Math. 50(2–3), 109–205 (1983) · Zbl 0531.14006
[4] Chiantini, L., Madonna, C.: ACM bundles on a general quintic threefold. Dedicated to Silvio Greco on the occasion of his 60th birthday (Catania, 2001). Matematiche (Catania) 55 (2000), no. 2, 239–258 (2002) · Zbl 1165.14304
[5] Chiantini L., Madonna C.: A splitting criterion for rank 2 bundles on a general sextic threefold. Int. J. Math. 15(4), 341–359 (2004) · Zbl 1059.14054 · doi:10.1142/S0129167X04002302
[6] Chiantini L., Madonna C.G.: ACM bundles on general hypersurfaces in \({\mathbb {P}^5}\) of low degree. Collect. Math. 56(1), 85–96 (2005) · Zbl 1071.14044
[7] Deligne, P., Katz, N.: Groupes de monodromie en géométrie algébrique. II. Séminaire de Géométrie Algébrique du Bois-Marie 1967–1969 (SGA 7 II). Lecture Notes in Mathematics, vol. 340. Springer- Verlag, Berlin (1973)
[8] Eisenbud, D.: Commutative Algebra. With a View Toward Algebraic Geometry. Graduate Texts in Mathematics, vol. 150. Springer-Verlag, New York (1995) · Zbl 0819.13001
[9] Green M.L.: Griffiths’ infinitesimal invariant and the Abel-Jacobi map. J. Differ. Geom. 29(3), 545–555 (1989) · Zbl 0692.14003
[10] Green M., Müller-Stach S.: Algebraic cycles on a general complete intersection of high multi-degree of a smooth projective variety. Compos. Math. 100(3), 305–309 (1996) · Zbl 0882.14001
[11] Griffiths, P.A.: On the periods of certain rational integrals I, II. Ann. Math. 90(2), 460–495 (1969), ibid. 90(2), 496–541 (1969) · Zbl 0215.08103
[12] Griffiths P.A.: Infinitesimal variations of Hodge structure. III. Determinantal varieties and the infinitesimal invariant of normal functions. Compos. Math. 50(2–3), 267–324 (1983) · Zbl 0576.14009
[13] Griffiths, P.: Infinitesimal invariant of normal functions. Topics in transcendental algebraic geometry. Ann. Math. Stud. 106, 305–316. Princeton University Press, Princeton (1984)
[14] Griffiths P., Harris J.: On the Noether-Lefschetz theorem and some remarks on codimension-two cycles. Math. Ann. 271(1), 31–51 (1985) · Zbl 0552.14011 · doi:10.1007/BF01455794
[15] Griffiths P., Harris J.: Infinitesimal variations of Hodge structure. II. An infinitesimal invariant of Hodge classes. Compos. Math. 50(2–3), 207–265 (1983) · Zbl 0576.14008
[16] Harris J., Hulek K.: On the normal bundle of curves on complete intersection surfaces. Math. Ann. 264(1), 129–135 (1983) · doi:10.1007/BF01458055
[17] Horrocks G.: Vector bundles on the punctured spectrum of a local ring. Proc. Lond. Math. Soc. Part 3 14, 689–713 (1964) · Zbl 0126.16801 · doi:10.1112/plms/s3-14.4.689
[18] Kleiman S.L.: Geometry on Grassmannians and applications to splitting bundles and smoothing cycles. Inst. Hautes Études Sci. Publ. Math. 36, 281–297 (1969) · Zbl 0208.48501 · doi:10.1007/BF02684605
[19] Kleppe H.: Deformation of schemes defined by vanishing of Pfaffians. J. Algebra 53(1), 84–92 (1978) · Zbl 0384.14004 · doi:10.1016/0021-8693(78)90207-7
[20] Lewis, J.D.: A survey of the Hodge conjecture, 2nd edn. Appendix B by B. Brent Gordon. CRM Monograph Series, 10. American Mathematical Society, Providence, xvi+368 pp (1999) · Zbl 0922.14004
[21] Madonna C.: A splitting criterion for rank 2 vector bundles on hypersurfaces in P4. Rend. Sem. Mat. Univ. Pol. Torino 56(2), 243–254 (1998) · Zbl 0957.14012
[22] Mohan Kumar N., Rao A.P., Ravindra G.V.: Arithmetically Cohen-Macaulay bundles on hypersurfaces. Comment. Math Helvetici 82(4), 829–843 (2007) · Zbl 1131.14047 · doi:10.4171/CMH/111
[23] Mohan Kumar, N., Rao, A.P., Ravindra, G.V.: Arithmetically Cohen-Macaulay bundles on three dimensional hypersurfaces. International Math Research Notices (2007) · Zbl 1132.14040
[24] Mohan Kumar, N., Rao, A.P., Ravindra, G.V.: On codimension two ACM subvarieties in hypersurfaces. In: Lewis, J.D., de Jeu, R. (eds.) Motives and Algebraic Cycles: A Conference Dedicated to the Mathematical heritage of Spencer J. Bloch. Fields Communications Series, vol. 56 (2009) · Zbl 1181.14025
[25] Okonek, C., Schneider, M., Spindler, H.: Vector Bundles on Complex Projective Spaces. Progress in Mathematics 3, Birkhäuser · Zbl 0438.32016
[26] Ravindra, G.V.: Curves on threefolds and a conjecture of Griffiths-Harris (2006, preprint)
[27] Voisin, C.: Sur une conjecture de Griffiths et Harris. Algebraic curves and projective geometry (Trento, 1988), 270–275. Lecture Notes in Mathematics, 1389. Springer, Berlin (1989)
[28] Voisin, C.: Hodge theory and complex algebraic geometry. II, Translated from the French by Leila Schneps. Cambridge Studies in Advanced Mathematics, vol. 77. Cambridge University Press, Cambridge (2003) · Zbl 1032.14002
[29] Wu X.: On an infinitesimal invariant of normal functions. Math. Ann. 288(1), 121–132 (1990) · Zbl 0687.14006 · doi:10.1007/BF01444525
[30] Wu X.: On a conjecture of Griffiths-Harris generalizing the Noether-Lefschetz theorem. Duke Math. J. 60(2), 465–472 (1990) · Zbl 0724.14030 · doi:10.1215/S0012-7094-90-06018-1
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.