×

Statistical analysis of a spatio-temporal model with location-dependent parameters and a test for spatial stationarity. (English) Zbl 1199.62017

The author deals with the location-dependent AR process \(\{X_t(u):u\in[0,1]^2\}\), where \(X_t(u)\) has the representation \[ X_t(u)=\sum_{j=1}^p a_j(u)X_{t-j}(u)+\sigma(u)\xi_t(u),\;t=l,\dots,T, \] where \(u=(x,y)\in[0,1]^2\), \(\{a(u);j=l,\dots,p\}\) and \(\sigma(u)\) are nonparametric functions, the innovations \(\{\xi_t(u):u\in[0,1]^2\}\) are independent in time spatially stationary processes with \(E[\xi_t(u)]=0\) and \(\text{var}[\xi_t(u)]=1\). The results of this article do not rely on any distributional assumptions on \(\xi_t(u)\). Note that if the \(\{a_j(u)\}\) are not constant over space, then \(\{X_t(u)\}\) is a spatially nonstationary process. The problem of estimation of the value of the spatio-temporal process \(X_t(u_0)\) at an arbitrary unobserved location \(u_0\) using known neighbouring observations \(\{X_1(u_s),\dots,X_T(u_s),\;s=1,\dots,m\}\) is investigated. The estimate depends on the parameters \(\{a_j(u_0)\}\) which are unknown and can not be estimated using standard methods since observations \(\{X_1(u_0),\dots,X_T(u_0)\}\) at location \(u_0\) are not given.
The author proposes two methods for estimating the \(\{a_j(u_0)\}\) under the assumption that the AR functions \(\{a_j(u)\}\) are continuous in the space. Both methods are based on a localized least squares criterion. The first estimator is a localized least squares estimator with constant regressors, whereas the second estimator is a local linear least squares estimator. The sampling properties of both estimators are considered in two cases, where: (i) the number of locations are fixed and time \(T\to\infty\); and (ii) both the number of locations and \(T\to\infty\). In the case in which the number of locations is fixed, it is shown that both estimators are asymptotically normal but biased (in probability). In the case in which the number of locations also grows, the estimators are asymptotically consistent. A test for spatial stationarity is developed, which is based on testing for homogeneity. The limiting distributions of the test statistic under the null and alternative hypotheses of spatial stationarity and nonstationarity are evaluated. The methods and the test for spatial stationarity are illustrated by simulations.

MSC:

62M10 Time series, auto-correlation, regression, etc. in statistics (GARCH)
62M30 Inference from spatial processes
62G05 Nonparametric estimation
62G10 Nonparametric hypothesis testing
62E20 Asymptotic distribution theory in statistics
62P12 Applications of statistics to environmental and related topics
Full Text: DOI

References:

[1] DOI: 10.1093/biomet/71.1.203 · Zbl 0532.62066 · doi:10.1093/biomet/71.1.203
[2] Cressie N. A., Statistics for Spatial Data (1993) · Zbl 1347.62005 · doi:10.1002/9781119115151
[3] DOI: 10.2307/2669946 · Zbl 0999.62073 · doi:10.2307/2669946
[4] DOI: 10.1214/aos/1176349022 · Zbl 0773.62029 · doi:10.1214/aos/1176349022
[5] Franke J., Athens conference on Applied probability and Time Series pp 177– (1996) · doi:10.1007/978-1-4612-2412-9_13
[6] DOI: 10.1198/016214503000170 · Zbl 1041.62041 · doi:10.1198/016214503000170
[7] DOI: 10.1002/env.720 · doi:10.1002/env.720
[8] DOI: 10.1198/016214504000001150 · Zbl 1117.62348 · doi:10.1198/016214504000001150
[9] Hall P., Martingale Limit Theory and its Application (1980) · Zbl 0462.60045
[10] DOI: 10.1214/009053604000000850 · Zbl 1069.62075 · doi:10.1214/009053604000000850
[11] DOI: 10.1198/016214503000000729 · doi:10.1198/016214503000000729
[12] DOI: 10.1198/004017007000000155 · doi:10.1198/004017007000000155
[13] DOI: 10.3150/07-BEJ5093 · Zbl 1127.62087 · doi:10.3150/07-BEJ5093
[14] Lutkepohl H., New Introduction to Multiple Time Series Analysis (2005) · doi:10.1007/978-3-540-27752-1
[15] DOI: 10.2307/2336405 · doi:10.2307/2336405
[16] DOI: 10.1111/j.1467-9892.2004.01795.x · Zbl 1062.62196 · doi:10.1111/j.1467-9892.2004.01795.x
[17] DOI: 10.1007/BF02530543 · Zbl 1056.62031 · doi:10.1007/BF02530543
[18] DOI: 10.1080/03610929508831600 · Zbl 0937.62641 · doi:10.1080/03610929508831600
[19] DOI: 10.1191/1471082x02st029oa · Zbl 0999.62074 · doi:10.1191/1471082x02st029oa
[20] S. Subba Rao(2007 ) Statistical analysis of a spatio-temporal model with location dependent parameters and a test for spatial stationarity - Technical Report . Available at: http://www.stat.tamu.edu/ suhasini/papers/spatial_temporal_technical_report.pdf.
[21] DOI: 10.2307/2289465 · Zbl 0626.62041 · doi:10.2307/2289465
[22] DOI: 10.2307/2332724 · doi:10.2307/2332724
[23] DOI: 10.1198/016214504000000241 · Zbl 1089.62538 · doi:10.1198/016214504000000241
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.