×

On the limiting case for boundedness of the \(B\)-Riesz potential in \(B\)-Morrey spaces. (English) Zbl 1199.42114

Summary: We consider the generalized shift operator associated with the Laplace-Bessel differential operator \[ \Delta_B=\sum^n_{j=1}\frac{\partial^2}{\partial x^2_j}+\sum^k_{i=1}\frac{\gamma_i}{x_i}\, \frac{\partial}{\partial x_i}, \] and study the modified \(B\)-Riesz potential \(\tilde I_{\alpha,\gamma}\) generated by the generalized shift operator acting in the \(B\)-Morrey space in the limiting case.
We prove that the operator \(\tilde I_{\alpha,\gamma}\), \(0 < \alpha < n + | \gamma| \), is bounded from the \(B\)-Morrey space \(L_{(n+| \gamma| -\lambda)/\alpha,\lambda,\gamma} (\mathbb R^n_{k,+} )\) to the \(B\)-BMO space \(\text{BMO}_\gamma (\mathbb R_{k,+}^n )\).

MSC:

42B30 \(H^p\)-spaces
Full Text: DOI

References:

[1] D. R. Adams, A note on Riesz potentials, Duke Math., 42(1975), 765–778. · Zbl 0336.46038 · doi:10.1215/S0012-7094-75-04265-9
[2] A. D. Gadjiev and I. A. Aliev, On classes of operators of potential types, generated by a generalized shift, Reports of enlarged Session of the Seminars of I.N. Vekua Inst. of Applied Mathematics, Tbilisi 3(1988), no. 2, 21–24 (in Russian).
[3] V. S. Guliev, Sobolev theorems for the Riesz B-potentials, Dokl. Acad. Nauk, 358(4)(1998), 450–451 (in Russian). · Zbl 1011.46031
[4] V. S. Guliev, Sobolev theorems for anisotropic Riesz-Bessel potentials on Morrey-Bessel spaces, Dokl. Acad. Nauk, 367(2)(1999), 155–156. · Zbl 0982.46023
[5] V. S. Guliev, Some properties of the anisotropic Riesz-Bessel potential, Analysis Math., 26(2000), 99–118. · Zbl 0973.47048 · doi:10.1023/A:1005632315360
[6] V. S. Guliyev, On maximal function and fractional integral, associated with the Bessel differential operator, Math. Inequal. Appl., 6(2003), 317–330. · Zbl 1047.47035
[7] V. S. Guliyev and J. J. Hasanov, Sobolev-Morrey type inequality for Riesz potentials, associated with the Laplace-Bessel differential operator, Frac. Calc. Appl. Anal., 9(2006), 17–32. · Zbl 1153.42303
[8] V. S. Guliyev and J.J. Hasanov, Necessary and sufficient conditions for the boundedness of B-Riesz potential in the B-Morrey spaces, J. Math. Anal. Appl., 347(2008), 113–122. · Zbl 1263.42003 · doi:10.1016/j.jmaa.2008.03.077
[9] V. S. Guliyev, A. Serbetci, and I. Ekincioglu, Necessary and sufficient conditions for the boundedness of rough B-fractional integral operators in the Lorentz spaces, J. Math. Anal. Appl., 336(2007), 425–437. · Zbl 1141.42010 · doi:10.1016/j.jmaa.2007.02.080
[10] I. A. Kipriyanov, Fourier-Bessel transformations and imbedding theorems, Trudy Mat. Inst. Steklova, 89(1967), 130–213 (in Russian); translation in Proc. Steklov Inst. Math., 89(1967), 149–246. · Zbl 0157.21902
[11] B. M. Levitan, Bessel function expansions in series and Fourier integrals, Uspekhi Matem. Nauk (N.S.), 6(1951), no. 2(42), 102–143 (in Russian). · Zbl 0043.07002
[12] L. N. Lyakhov, Multipliers of the mixed Fourier-Bessel transformation, Trudy Mat. Inst. Steklova 214(1997), 234–249 (in Russian); translation in Proc. Steklov Inst. Math., 214(1997), 227–242. · Zbl 0909.42006
[13] B. Muckenhoupt and E. M. Stein, Classical expansions and their relation to conjugate harmonic functions, Trans. Amer. Math. Soc., 118(1965), 17–92. · Zbl 0139.29002 · doi:10.1090/S0002-9947-1965-0199636-9
[14] C. B. Morrey, On the solutions of quasi-linear elliptic partial differential equations, Trans. Amer. Math. Soc., 43(1938), 126–166. · Zbl 0018.40501 · doi:10.1090/S0002-9947-1938-1501936-8
[15] S. G. Samko, A. A. Kilbas, and O.I. Marichev, Fractional integrals and derivative. Theory and applications, Gordon and Breach Sci. Publishers (Yverdon, 1993). · Zbl 0818.26003
[16] E. M. Stein, Singular integrals and differentiability properties of functions, Princeton Univ. Press (Princeton, NJ, 1970). · Zbl 0207.13501
[17] K. Stempak, Almost everywhere summability of Laguerre series, Studia Math., 100(1991), 129–147. · Zbl 0731.42027
[18] K. Trimeche, Inversion of the Lions transmutation operators using generalized wavelets, Appl. Comput. Harmon. Anal., 4(1997), 97–112. · Zbl 0872.34059 · doi:10.1006/acha.1996.0206
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.