×

Siphons in chemical reaction networks. (English) Zbl 1198.92020

Summary: Siphons in a chemical reaction system are subsets of the species that have the potential of being absent in a steady state. We present a characterization of minimal siphons in terms of primary decomposition of binomial ideals, we explore the underlying geometry, and we demonstrate the effective computation of siphons using computer algebra software. This leads to a new method for determining whether given initial concentrations allow for various boundary steady states.

MSC:

92C45 Kinetics in biochemical problems (pharmacokinetics, enzyme kinetics, etc.)
68W99 Algorithms in computer science
92E20 Classical flows, reactions, etc. in chemistry

References:

[1] Adleman, L., Gopalkrishnan, M., Huang, M.-D., Moisset, P., Reishus, D., 2008. On the mathematics of the law of mass action. arXiv:0810.1108 .
[2] Anderson, D., 2008. Global asymptotic stability for a class of nonlinear chemical equations. SIAM J. Appl. Math. 68, 1464–1476. · Zbl 1151.92038 · doi:10.1137/070698282
[3] Anderson, D., Shiu, A., 2010. Persistence of deterministic population processes and the global attractor conjecture. SIAM J. Appl. Math. (to appear). arXiv:0903.0901 .
[4] Angeli, D., Sontag, E., 2006. Translation-invariant monotone systems, and a global convergence result for enzymatic futile cycles. Nonlinear Anal. Ser. B: Real World Appl. 9, 128–140. · Zbl 1401.92086 · doi:10.1016/j.nonrwa.2006.09.006
[5] Angeli, D., De Leenheer, P., Sontag, E., 2007. A Petri net approach to persistence analysis in chemical reaction networks. In: Queinnec, I., Tarbouriech, S., Garcia, G., Niculescu, S.-I. (Eds.), Biology and Control Theory: Current Challenges, Lecture Notes in Control and Information Sciences, vol. 357, pp. 181–216. Springer, Berlin. · Zbl 1133.92322
[6] Chavez, M., 2003. Observer design for a class of nonlinear systems, with applications to chemical and biological networks. Ph.D. Thesis, Rutgers University.
[7] Cordone, R., Ferrarini, L., Piroddi, L., 2005. Enumeration algorithms for minimal siphons in Petri nets based on place constraints. IEEE Trans. Syst. Man Cybern. Part A 35(6), 844–854. · doi:10.1109/TSMCA.2005.853504
[8] Cox, D., Little, J., O’Shea, D., 2007. Ideals, Varieties and Algorithms, 3rd edn., Undergraduate Texts in Mathematics. Springer, New York.
[9] Craciun, G., Dickenstein, A., Shiu, A., Sturmfels, B., 2009. Toric dynamical systems. J. Symb. Comput. 44(11), 1551–1565. · Zbl 1188.37082 · doi:10.1016/j.jsc.2008.08.006
[10] Craciun, G., Pantea, C., Rempala, G., 2009. Algebraic methods for inferring biochemical networks: a maximum likelihood approach. Comput. Biol. Chem. 33(5), 361–367. · Zbl 1403.92090 · doi:10.1016/j.compbiolchem.2009.07.014
[11] Diaconis, P., Eisenbud, D., Sturmfels, B., 1998. Lattice walks and primary decomposition. In: Sagan, B.E., Stanley, R.P. (Eds.), Mathematical Essays in Honor of Gian-Carlo Rota, pp. 173–193. Birkhäuser, Basel. · Zbl 0962.05010
[12] Dickenstein, A., Matusevich, L., Miller, E., 2010. Combinatorics of binomial primary decomposition. Math. Z. (to appear). arXiv:0803.3846 . · Zbl 1190.13017
[13] Eisenbud, D., Sturmfels, B., 1996. Binomial ideals. Duke Math. J. 84, 1–45. · Zbl 0873.13021 · doi:10.1215/S0012-7094-96-08401-X
[14] Gawrilow, E., Joswig, M., 2000. Polymake: a framework for analyzing convex polytopes. In: Polytopes–Combinatorics and Computation, Oberwolfach, 1997, DMV Sem., vol. 29, pp. 43–73. Birkhäuser, Basel. · Zbl 0960.68182
[15] Grayson, D., Stillman, M. Macaulay 2, a software system for research in algebraic geometry, www.math.uiuc.edu/Macaulay2/ .
[16] Kahle, T., 2009. Decompositions of binomial ideals. arXiv:0906.4873 . · Zbl 1311.13038
[17] Manrai, A., Gunawardena, J., 2008. The geometry of multisite phosphorylation. Biophys. J. 95, 5533–5543. · doi:10.1529/biophysj.108.140632
[18] Miller, E., Sturmfels, B., 2005. Combinatorial Commutative Algebra, Graduate Texts in Mathematics. Springer, New York. · Zbl 1090.13001
[19] Roune, B., 2009. The slice algorithm for irreducible decomposition of monomial ideals. J. Symb. Comput. 44(4), 358–381. · Zbl 1169.13020 · doi:10.1016/j.jsc.2008.08.002
[20] Siegel, D., MacLean, D., 2004. Global stability of complex balanced mechanisms. J. Math. Biol. 27, 89–110. · Zbl 1012.92046
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.