×

Correlation stress testing for value-at-risk: an unconstrained convex optimization approach. (English) Zbl 1198.91091

Summary: Correlation stress testing is employed in several financial models for determining the value-at-risk (VaR) of a financial institution’s portfolio. The possible lack of mathematical consistence in the target correlation matrix, which must be positive semidefinite, often causes breakdown of these models. The target matrix is obtained by fixing some of the correlations (often contained in blocks of submatrices) in the current correlation matrix while stressing the remaining to a certain level to reflect various stressing scenarios. The combination of fixing and stressing effects often leads to mathematical inconsistence of the target matrix. It is then naturally to find the nearest correlation matrix to the target matrix with the fixed correlations unaltered. However, the number of fixed correlations could be potentially very large, posing a computational challenge to existing methods. In this paper, we propose an unconstrained convex optimization approach by solving one or a sequence of continuously differentiable (but not twice continuously differentiable) convex optimization problems, depending on different stress patterns. This research fully takes advantage of the recently developed theory of strongly semismooth matrix valued functions, which makes fast convergent numerical methods applicable to the underlying unconstrained optimization problem. Promising numerical results on practical data (RiskMetrics database) and randomly generated problems of larger sizes are reported.

MSC:

91B30 Risk theory, insurance (MSC2010)
91G10 Portfolio theory
90C25 Convex programming

Software:

QSDP
Full Text: DOI

References:

[1] Alexander, C.: Market Models: A Guide to Financial Data Analysis. Wiley, New York (2001)
[2] Alizadeh, F., Haeberly, J.-P.A., Overton, M.L.: Complementarity and nondegeneracy in semidefinite programming. Math. Program. 77, 111–128 (1997) · Zbl 0890.90141
[3] Arnold, V.I.: On matrices depending on parameters. Rus. Math. Surv. 26, 29–43 (1971) · Zbl 0259.15011 · doi:10.1070/RM1971v026n02ABEH003827
[4] Bai, Z.-J., Chu, D., Sun, D.F.: A dual optimization approach to inverse quadratic eigenvalue problems with partial eigenstructure. SIAM J. Sci. Comput. 29, 2531–2561 (2007) · Zbl 1154.65312 · doi:10.1137/060656346
[5] Bhansali, V., Wise, B.: Forecasting portfolio risk in normal and stressed market. J. Risk 4(1), 91–106 (2001)
[6] Bonnans, J.F., Shapiro, A.: Perturbation Analysis of Optimization Problems. Springer, New York (2000) · Zbl 0966.49001
[7] Boyd, S., Xiao, L.: Least-squares covariance matrix adjustment. SIAM J. Matrix Anal. Appl. 27, 532–546 (2005) · Zbl 1099.65039 · doi:10.1137/040609902
[8] Chen, X., Qi, H.D., Tseng, P.: Analysis of nonsmooth symmetric matrix valued functions with applications to semidefinite complementarity problems. SIAM J. Optim. 13, 960–985 (2003) · Zbl 1076.90042 · doi:10.1137/S1052623400380584
[9] Clarke, F.H.: Optimization and Nonsmooth Analysis. Wiley, New York (1983) · Zbl 0582.49001
[10] Dash, J.W.: Quantitative Finance and Risk Management: A Physicist’s Approach. World Scientific, Singapore (2004) · Zbl 1104.91001
[11] Eaves, B.C.: On the basic theorem of complementarity. Math. Program. 1, 68–75 (1971) · Zbl 0227.90044 · doi:10.1007/BF01584073
[12] Fender, I., Gibson, M.S., Mosser, P.C.: An international survey of stress tests. Federal Reserve Bank of New York, Current Issues in Economics and Finance, vol. 7, No. 10 (2001)
[13] Finger, C.: A methodology for stress correlation. In: Risk Metrics Monitor, Fourth Quarter (1997)
[14] Hestenes, M.R., Stiefel, E.: Methods of conjugate gradients for solving linear systems. J. Res. Nat. Bur. Stand. 49, 409–436 (1952) · Zbl 0048.09901
[15] Higham, N.J.: Computing the nearest correlation matrix–a problem from finance. IMA J. Numer. Anal. 22, 329–343 (2002) · Zbl 1006.65036 · doi:10.1093/imanum/22.3.329
[16] Kercheval, A.N.: On Rebonato and Jäckel’s parametrization method for finding nearest correlation matrices. Int. J. Pure Appl. Math. 45, 383–390 (2008) · Zbl 1153.91523
[17] Kupiec, P.H.: Stress testing in a Value-at-Risk framework. J. Deriv. 6(1), 7–24 (1998) · doi:10.3905/jod.1998.408008
[18] León, A., Peris, J.E., Silva, J., Subiza, B.: A note on adjusting correlation matrices. Appl. Math. Finance 9, 61–67 (2002) · Zbl 1013.91096
[19] Malick, J.: A dual approach to semidefinite least-squares problems. SIAM J. Matrix Anal. Appl. 26, 272–284 (2004) · Zbl 1080.65027 · doi:10.1137/S0895479802413856
[20] J.P. Morgan/Reuters: RiskMetrics–Technical Document, 4th edn. New York (1996)
[21] Pang, J.S., Sun, D.F., Sun, J.: Semismooth homeomorphisms and strong stability of semidefinite and Lorentz complementarity problems. Math. Oper. Res. 28, 39–63 (2003) · Zbl 1082.90115 · doi:10.1287/moor.28.1.39.14258
[22] Qi, H.D., Sun, D.F.: A quadratically convergent Newton method for computing the nearest correlation matrix. SIAM J. Matrix Anal. Appl. 28, 360–385 (2006) · Zbl 1120.65049 · doi:10.1137/050624509
[23] Qi, L.: Convergence analysis of some algorithms for solving nonsmooth equations. Math. Oper. Res. 18, 227–244 (1993) · Zbl 0776.65037 · doi:10.1287/moor.18.1.227
[24] Rapisarda, F., Brigo, D., Mercurio, F.: Parameterizing correlations: a geometric interpretation. IMA J. Manag. Math. 18, 55–73 (2007) · Zbl 1123.62041 · doi:10.1093/imaman/dpl010
[25] Rebonato, R., Jäckel, P.: The most general methodology for creating a valid correlation matrix for risk management and option pricing purpose. J. Risk 2(2), 17–27 (2000)
[26] Rockafellar, R.T.: Conjugate Duality and Optimization. SIAM, Philadelphia (1974) · Zbl 0296.90036
[27] Rockafellar, R.T.: Monotone operators and the proximal point algorithm. SIAM J. Control Optim. 14, 877–898 (1976) · Zbl 0358.90053 · doi:10.1137/0314056
[28] Rockafellar, R.T.: Augmented Lagrangians and applications of the proximal point algorithm in convex programming. Math. Oper. Res. 1, 97–116 (1976) · Zbl 0402.90076 · doi:10.1287/moor.1.2.97
[29] Rockafellar, R.T., Wets, R.J.-B.: Variational Analysis. Springer, Berlin (1998)
[30] Sun, D.F.: The strong second order sufficient condition and the constraint nondegeneracy in nonlinear semidefinite programming and their implications. Math. Oper. Res. 31, 761–776 (2006) · Zbl 1278.90304 · doi:10.1287/moor.1060.0195
[31] Sun, D.F., Sun, J.: Semismooth matrix valued functions. Math. Oper. Res. 27, 150–169 (2002) · Zbl 1082.49501 · doi:10.1287/moor.27.1.150.342
[32] Sun, D.F., Sun, J., Zhang, L.W.: The rate of convergence of the augmented Lagrangian method for nonlinear semidefinite programming. Math. Program. 114, 349–391 (2008) · Zbl 1190.90117 · doi:10.1007/s10107-007-0105-9
[33] Toh, K.C., Tütüncü, R.H., Todd, M.J.: Inexact primal-dual path-following algorithms for a special class of convex quadratic SDP and related problems. Pac. J. Optim. 3, 135–164 (2007) · Zbl 1136.90026
[34] Turkay, S., Epperlein, E., Christofides, N.: Correlation stress testing for value-at-risk. J. Risk 5(4), 75–89 (2003)
[35] Zarantonello, E.H.: Projections on convex sets in Hilbert space and spectral theory I and II. In: Zarantonello, E.H. (ed.) Contributions to Nonlinear Functional Analysis, pp. 237–424. Academic, New York (1971) · Zbl 0281.47043
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.