×

On the solutions of set-valued stochastic differential equations in M-type 2 Banach spaces. (English) Zbl 1198.60027

Authors’ abstract: In a certain Banach space called an M-type 2 Banach space (including Hilbert spaces), we consider a set-valued stochastic differential equation with a set-valued drift term and a single valued diffusion term, under the Lipschitz continuity conditions, and we prove the existence and uniqueness of strong solutions which are continuous in the Hausdorff distance.

MSC:

60H25 Random operators and equations (aspects of stochastic analysis)
60H35 Computational methods for stochastic equations (aspects of stochastic analysis)
26E25 Set-valued functions
Full Text: DOI

References:

[1] J. P. Aubin and H. Frankowska, Set-valued analysis, Birkhäuser, Boston, Basel, Berlin, 1990. · Zbl 0713.49021
[2] J. P. Aubin and G. Da Prato, The viability theorem for stochastic differential inclusions, Stochastic Anal. Appl. 16 (1998), 1–15. · Zbl 0931.60059 · doi:10.1080/07362999808809512
[3] Z. Brzeźniak and A. Carroll, Approximations of the Wong-Zakai type for stochastic differential equations in M-type 2 Banach spaces with applications to loop spaces, Séminaire de Probabilitiés, XXXVII: 251–289, Lecture Notes in Math. 1832, Springer-Verlag, Berlin, 2003. · Zbl 1040.60047
[4] C. Castaing and M. Valadier, Convex analysis and measurable multifunctions, Lecture Notes in Math. 580, Springer-Verlag, Berlin, 1977. · Zbl 0346.46038
[5] D. A. Charalambos and C. B. Kim, Infinite dimensional analysis, Springer-Verlag, Berlin, 1994. · Zbl 0839.46001
[6] F. Hiai and H. Umegaki, Integrals, conditional expectations and martingales of multivalued functions, J. Multivariate. Anal. 7 (1977), 149–182. · Zbl 0368.60006 · doi:10.1016/0047-259X(77)90037-9
[7] F. Hiai, Convergence of conditional expectations and strong laws of large numbers for multivalued random variables, Trans. Amer. Math. Soc. 291 (1985), 613–627. · Zbl 0583.60007 · doi:10.2307/2000101
[8] N. Ikeda and S. Watanabe, Stochastic differential equations and diffusion processes, North-Holland Math. Library, 24, North-Holland Publishing Co. Amsterdam-New York, Kodansha, Ltd., Tokyo, 1981. · Zbl 0495.60005
[9] D. A. Kandilakis and N. S. Papageorgiou, On the existence of solutions for random differential inclusions in a Banach space, J. Math. Anal. Appl. 126 (1987), 11–23. · Zbl 0629.60075 · doi:10.1016/0022-247X(87)90070-9
[10] M. Kisielewicz, M. Michta and J. Motyl, Set valued approach to stochastic control, part I, Existence and regularity properties, Dynam. Systems Appl. 12 (2003), 405–432. · Zbl 1063.93047
[11] M. Kisielewicz, M. Michta and J. Motyl, Set valued approach to stochastic control, part II, Viability and semimartingale issues, Dynam. Systems Appl. 12 (2003), 433–466. · Zbl 1064.93042
[12] M. Kisielewicz, Set-valued stochastic integrals and stochastic inclusions, Stochastic Anal. Appl. 15 (1997), 780–800. · Zbl 0891.93070 · doi:10.1080/07362999708809507
[13] M. Kisielewicz, Properties of solution set of stochastic inclusions, J. Appl. Math. Stochastic Anal. 6 (1993), 217–236. · Zbl 0796.93106 · doi:10.1155/S1048953393000188
[14] M. Kisielewicz, Existence theorem for nonconvex stochastic inclusions, J. Appl. Math. Stochastic Anal. 7 (1994), 151–159. · Zbl 0817.93065 · doi:10.1155/S104895339400016X
[15] M. Kisielewicz, Quasi-retractive representation of solution sets to stochastic inclusions, J. Appl. Math. Stochastic Anal. 10 (1997), 227–238. · Zbl 1043.34505 · doi:10.1155/S1048953397000294
[16] H. Kunita, Stochastic differential equations and stochastic flows of diffeomorphisms, École d’été de Probabilités de Saint-Flour, XII–1982, 143–303, Lecture Notes in Math. 1097, Springer-Verlag, Berlin, 1984. · Zbl 0554.60066
[17] S. Li, Y. Ogura and V. Kreinovich, Limit theorems and applications of set-valued and fuzzy set-valued random variables, Kluwer Academic Publishers, Dordrecht, 2002. · Zbl 1348.60003
[18] R. E. Megginson, An introduction to Banach space theory, Springer, New York, 1998. · Zbl 0910.46008 · doi:10.1007/978-1-4612-0603-3
[19] M. Michta, Set-valued random differential equations in Banach space, Discuss. Math. Differential Incl. 15 (1995), 191–200. · Zbl 0878.34013
[20] J. Motyl, On the solution of stochastic differential inclusion, J. Math. Anal. Appl. 192 (1995), 117–132. · Zbl 0826.60053 · doi:10.1006/jmaa.1995.1163
[21] Y. Ogura, On stochastic differential equations with set coefficients and the Black-Scholes model, Proceedings of the Eighth International Conference on Intelligent Technologies, 300–304, Sydney, 2007.
[22] B. Øksendal, Stochastic differential equations, Springer-Verlag, 1998.
[23] G. Pisier, Martingales with values in uniformly convex spaces, Israel J. Math. 20 (1976), 326–350. · Zbl 0344.46030 · doi:10.1007/BF02760337
[24] J. J. Uhl, Jr., The range of a vector-valued measure, Proc. Amer. Math. Soc. 23 (1969), 158–163. JSTOR: · Zbl 0182.46903 · doi:10.2307/2037509
[25] J. Zhang, S. Li, I. Mitoma and Y. Okazaki, On set-valued stochastic integrals in an M-type 2 Banach space, J. Math. Anal. Appl. 350 (2009), 216–233. · Zbl 1155.60021 · doi:10.1016/j.jmaa.2008.09.017
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.