×

Global Hilbert expansion for the Vlasov-Poisson-Boltzmann system. (English) Zbl 1198.35273

Summary: The dynamics of an electron gas in a constant ion background can be decribed by the Vlasov-Poisson-Boltzmann system at the kinetic level, or by the compressible Euler-Poisson system at the fluid level. We prove that any solution of the Vlasov-Poisson-Boltzmann system near a smooth local Maxwellian with a small irrotational velocity converges globally in time to the corresponding solution to the Euler-Poisson system, as the mean free path \(\varepsilon \) goes to zero. We use a recent \(L^2\)-\(L^\infty\) framework in the Boltzmann theory to control the higher order remainder in the Hilbert expansion uniformly in \(\varepsilon \) and globally in time.

MSC:

35Q83 Vlasov equations
82C40 Kinetic theory of gases in time-dependent statistical mechanics
82D10 Statistical mechanics of plasmas
76X05 Ionized gas flow in electromagnetic fields; plasmic flow
35A35 Theoretical approximation in context of PDEs

References:

[1] Bardos C., Golse F., Levermore D.: Fluid dynamic limits of kinetic equations I. Formal derivations. J.Stat.Phys 63, 323–344 (1991) · doi:10.1007/BF01026608
[2] Caflisch R.: The fluid dynamic limit of the nonlinear Boltzmann equation. Comm. Pure Appl. Math. 33, 651–666 (1980) · doi:10.1002/cpa.3160330506
[3] Evans, L.C.: Partial differential equations, Graduate Studies in Mathematics 19. Providence, RI: Amer. Math. Soc., 1998 · Zbl 0902.35002
[4] Guo Y.: Smooth irrotational flows in the large to the Euler-Poisson system in R 3+1. Commun. Math. Phys. 195, 249–265 (1998) · Zbl 0929.35112 · doi:10.1007/s002200050388
[5] Guo Y.: The Vlasov-Poisson-Boltzmann system near Maxwellians. Comm. Pure. Appl. Math. 55, 1104–1135 (2002) · Zbl 1027.82035 · doi:10.1002/cpa.10040
[6] Guo, Y.: Decay and continuity of Boltzmann equation in bounded domains, Arch. Rat. Mech. Anal., in press, doi: 10.1007/s00205-009-0285-7 , 2009
[7] Guo Y.: The Landau equation in a periodic box. Commun. Math. Phys. 231, 391–434 (2002) · Zbl 1042.76053 · doi:10.1007/s00220-002-0729-9
[8] Guo Y., Jang J., Jiang N.: Local Hilbert Expansion for Boltzmann Equation. Kinet. Relat. Models 2, 205–214 (2009) · Zbl 1372.76089 · doi:10.3934/krm.2009.2.205
[9] Guo Y., Jang J., Jiang N.: Acoustic Limit for the Boltzmann equation in Optimal Scaling. Comm. Pure. Appl. Math. 63, 337–361 (2010) · Zbl 1187.35149
[10] Majda, A.: Compressible fluid flow and systems of conservation laws in several space variables, Vol. 53 of Applied Mathematical Sciences, New York: Springer-Verlag, 1984 · Zbl 0537.76001
[11] Sideris T.: Formation of singularities in three-dimensional compressible fluids. Commun. Math. Phys. 101, 475–485 (1985) · Zbl 0606.76088 · doi:10.1007/BF01210741
[12] Strain R.: The Vlasov-Maxwell-Boltzmann system in the whole space. Comm. Math. Phys. 268, 543–567 (2006) · Zbl 1129.35022 · doi:10.1007/s00220-006-0109-y
[13] Strain R., Guo Y.: Stability of relativstic Maxwellians in a collisional plasma. Commun. Math. Phys. 251(2), 263–320 (2004) · Zbl 1113.82070 · doi:10.1007/s00220-004-1151-2
[14] Yang T., Yu H., Zhao H.: Cauchy problem for the Vlasov-Poisson-Boltzmann system. Arch. Rat. Mech. Anal. 182, 415–470 (2006) · Zbl 1104.76086 · doi:10.1007/s00205-006-0009-5
[15] Yang T., Zhao H.: Global existence of classical solutions to the Vlasov-Poisson-Boltzmann system. Commun. Math. Phys. 268, 569–605 (2006) · Zbl 1129.35023 · doi:10.1007/s00220-006-0103-4
[16] Yu S.-H.: Hydrodynamic limits with shock waves of the Boltzmann equation. Comm. Pure. Appl. Math. 58, 409–443 (2005) · Zbl 1088.82022 · doi:10.1002/cpa.20027
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.