×

On the instability of a class of periodic travelling wave solutions of the modified Boussinesq equation. (English) Zbl 1198.35215

Summary: This paper is concerned with the instability of periodic travelling wave solutions of the modified Boussinesq equation. Periodic travelling wave solutions with a fixed fundamental period \(L\) are constructed by using Jacobi’s elliptic functions. It is shown that these solutions, called dnoidal waves, are nonlinearly unstable in the energy space for a range of their speeds of propagation and periods.

MSC:

35Q53 KdV equations (Korteweg-de Vries equations)
35B35 Stability in context of PDEs
35B10 Periodic solutions to PDEs
35C07 Traveling wave solutions
35C05 Solutions to PDEs in closed form

References:

[1] J. Boussinesq, “Théorie de l’intumescence liquide appelée onde solitaire ou de translation se propageant dans un canal rectangulaire,” Comptes Rendus, vol. 72, pp. 755-759, 1871. · JFM 03.0486.01
[2] J. Boussinesq, “Théorie des ondes et des remous qui se propagent le long d’un canal rectangulaire horizontal, en communiquant au liquide contenu dans ce canal des vitesses sensiblement pareilles de la surface au fond,” Journal de Mathematiques Pures et Appliquees, vol. 17, no. 2, pp. 55-108, 1872. · JFM 04.0493.04
[3] J. L. Bona and R. L. Sachs, “Global existence of smooth solutions and stability of solitary waves for a generalized Boussinesq equation,” Communications in Mathematical Physics, vol. 118, no. 1, pp. 15-29, 1988. · Zbl 0654.35018 · doi:10.1007/BF01218475
[4] Y. Liu, “Instability of solitary waves for generalized Boussinesq equations,” Journal of Dynamics and Differential Equations, vol. 5, no. 3, pp. 537-558, 1993. · Zbl 0784.34048 · doi:10.1007/BF01053535
[5] L. K. Arruda, “Nonlinear stability properties of periodic travelling wave solutions of the classical Korteweg-de Vries and Boussinesq equations,” Portugaliae Mathematica, vol. 66, no. 2, pp. 225-259, 2009. · Zbl 1173.35649 · doi:10.4171/PM/1842
[6] L. K. Arruda, “Orbital stability of a class of periodic travelling wave solutions of the modified Boussinesq equations,” preprint. · Zbl 1198.35215 · doi:10.1155/2010/637497
[7] J. L. Bona, P. E. Souganidis, and W. A. Strauss, “Stability and instability of solitary waves of Korteweg-de Vries type,” Proceedings of the Royal Society of London. Series A, vol. 411, no. 1841, pp. 395-412, 1987. · Zbl 0648.76005 · doi:10.1098/rspa.1987.0073
[8] M. Grillakis, J. Shatah, and W. Strauss, “Stability theory of solitary waves in the presence of symmetry. I,” Journal of Functional Analysis, vol. 74, no. 1, pp. 160-197, 1987. · Zbl 0656.35122 · doi:10.1016/0022-1236(87)90044-9
[9] M. Grillakis, J. Shatah, and W. Strauss, “Stability theory of solitary waves in the presence of symmetry. II,” Journal of Functional Analysis, vol. 94, no. 2, pp. 308-348, 1990. · Zbl 0711.58013 · doi:10.1016/0022-1236(90)90016-E
[10] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, vol. 44 of Applied Mathematical Sciences, Springer, New York, NY, USA, 1983. · Zbl 0516.47023
[11] P. F. Byrd and M. D. Friedman, Handbook of Elliptic Integrals for Engineers and Scientists, vol. 67 of Die Grundlehren der Mathematischen Wissenschaften, Springer, New York, NY, USA, 2nd edition, 1971. · Zbl 0213.16602
[12] J. Angulo, “Nonlinear stability of periodic traveling wave solutions to the Schrödinger and the modified Korteweg-de Vries equations,” Journal of Differential Equations, vol. 235, no. 1, pp. 1-30, 2007. · Zbl 1119.35088 · doi:10.1016/j.jde.2007.01.003
[13] W. Magnus and S. Winkler, Hill’s Equation, vol. 20 of Tracts in Pure and Applied Mathematics, John Wiley & Sons, New York, NY, USA, 1976. · Zbl 0158.09604
[14] R. Courant and D. Hilbert, Methods of Mathematical Physics. Vol. II, John Wiley & Sons, New York, NY, USA, 1962. · Zbl 0099.29504
[15] S. Reed and B. Simon, Methods of Modern Mathematical Physics: Analysis of Operators, vol. 5, Academic Press, 1978. · Zbl 0401.47001
[16] N. I. Akhiezer, Elements of the Theory of Elliptic Functions, vol. 79 of Translations of Mathematical Monographs, American Mathematical Society, Providence, RI, USA, 1990. · Zbl 0698.65035 · doi:10.1007/BF02209166
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.