×

A-priori analysis and the finite element method for a class of degenerate elliptic equations. (English) Zbl 1198.35111

Summary: Consider the degenerate elliptic operator \( \mathcal{L_\delta} := -\partial^2_x-\frac{\delta^2}{x^2}\partial^2_y\) on \( \Omega:= (0, 1)\times(0, l)\), for \( \delta>0, l>0\). We prove well-posedness and regularity results for the degenerate elliptic equation \( \mathcal{L_\delta} u=f\) in \( \Omega, u| _{\partial\Omega}=0\) using weighted Sobolev spaces \( \mathcal{K}^m_a\). In particular, by a proper choice of the parameters in the weighted Sobolev spaces \( \mathcal{K}^m_a\), we establish the existence and uniqueness of the solution. In addition, we show that there is no loss of \( \mathcal{K}^m_a\)-regularity for the solution of the equation. We then provide an explicit construction of a sequence of finite dimensional subspaces \( V_n\) for the finite element method, such that the optimal convergence rate is attained for the finite element solution \( u_n\in V_n\), i.e., \( || u-u_n|| _{H^1(\Omega)}\leq C{\dim}(V_n)^{-\frac{m}{2}}|| f|| _{H^{m-1}(\Omega)}\) with \( C\) independent of \( f\) and \( n\).

MSC:

35J70 Degenerate elliptic equations
41A25 Rate of convergence, degree of approximation
41A50 Best approximation, Chebyshev systems
65N12 Stability and convergence of numerical methods for boundary value problems involving PDEs
65N15 Error bounds for boundary value problems involving PDEs
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65N50 Mesh generation, refinement, and adaptive methods for boundary value problems involving PDEs
Full Text: DOI

References:

[1] Robert A. Adams, Sobolev spaces, Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York-London, 1975. Pure and Applied Mathematics, Vol. 65. · Zbl 0314.46030
[2] Bernd Ammann, Alexandru D. Ionescu, and Victor Nistor, Sobolev spaces on Lie manifolds and regularity for polyhedral domains, Doc. Math. 11 (2006), 161 – 206. · Zbl 1247.35031
[3] Bernd Ammann and Victor Nistor, Weighted Sobolev spaces and regularity for polyhedral domains, Comput. Methods Appl. Mech. Engrg. 196 (2007), no. 37-40, 3650 – 3659. · Zbl 1173.35415 · doi:10.1016/j.cma.2006.10.022
[4] Thomas Apel, Anisotropic finite elements: local estimates and applications, Advances in Numerical Mathematics, B. G. Teubner, Stuttgart, 1999. · Zbl 0917.65090
[5] Thomas Apel, Serge Nicaise, and Joachim Schöberl, Finite element methods with anisotropic meshes near edges, Finite element methods (Jyväskylä, 2000) GAKUTO Internat. Ser. Math. Sci. Appl., vol. 15, Gakkōtosho, Tokyo, 2001, pp. 1 – 8. · Zbl 0994.65119
[6] Thomas Apel, Anna-Margarete Sändig, and John R. Whiteman, Graded mesh refinement and error estimates for finite element solutions of elliptic boundary value problems in non-smooth domains, Math. Methods Appl. Sci. 19 (1996), no. 1, 63 – 85. , https://doi.org/10.1002/(SICI)1099-1476(19960110)19:13.0.CO;2-S · Zbl 0838.65109
[7] Douglas N. Arnold, L. Ridgway Scott, and Michael Vogelius, Regular inversion of the divergence operator with Dirichlet boundary conditions on a polygon, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 15 (1988), no. 2, 169 – 192 (1989). · Zbl 0702.35208
[8] Ivo Babuška, Finite element method for domains with corners, Computing (Arch. Elektron. Rechnen) 6 (1970), 264 – 273 (English, with German summary). · Zbl 0224.65031
[9] A. K. Aziz , The mathematical foundations of the finite element method with applications to partial differential equations, Academic Press, New York-London, 1972. · Zbl 0259.00014
[10] I. Babuška and A. K. Aziz, On the angle condition in the finite element method, SIAM J. Numer. Anal. 13 (1976), no. 2, 214 – 226. · Zbl 0324.65046 · doi:10.1137/0713021
[11] I. Babuška, R. B. Kellogg, and J. Pitkäranta, Direct and inverse error estimates for finite elements with mesh refinements, Numer. Math. 33 (1979), no. 4, 447 – 471. · Zbl 0423.65057 · doi:10.1007/BF01399326
[12] Ivo Babuška and Victor Nistor, Interior numerical approximation of boundary value problems with a distributional data, Numer. Methods Partial Differential Equations 22 (2006), no. 1, 79 – 113. · Zbl 1101.65105 · doi:10.1002/num.20086
[13] Constantin Bacuta and James H. Bramble, Regularity estimates for solutions of the equations of linear elasticity in convex plane polygonal domains, Z. Angew. Math. Phys. 54 (2003), no. 5, 874 – 878. Special issue dedicated to Lawrence E. Payne. · Zbl 1032.74026 · doi:10.1007/s00033-003-3211-4
[14] C. Băcuţă, V. Nistor, and L. T. Zikatanov, Regularity and well posedness for the Laplace operator on polyhedral domains, IMA Preprint, 2004.
[15] Constantin Băcuţă, Victor Nistor, and Ludmil T. Zikatanov, Improving the rate of convergence of ’high order finite elements’ on polygons and domains with cusps, Numer. Math. 100 (2005), no. 2, 165 – 184. · Zbl 1116.65119 · doi:10.1007/s00211-005-0588-3
[16] Constantin Bacuta, Victor Nistor, and Ludmil T. Zikatanov, Improving the rate of convergence of high-order finite elements on polyhedra. I. A priori estimates, Numer. Funct. Anal. Optim. 26 (2005), no. 6, 613 – 639. · Zbl 1121.35031 · doi:10.1080/01630560500377295
[17] K. Kh. Boĭmatov, Estimates for solutions of strongly degenerate elliptic equations in weighted Sobolev spaces, Tr. Semin. im. I. G. Petrovskogo 21 (2001), 194 – 239, 341 (Russian, with Russian summary); English transl., J. Math. Sci. (New York) 108 (2002), no. 4, 543 – 573. · Zbl 0992.35039 · doi:10.1023/A:1013110406673
[18] James H. Bramble and Xuejun Zhang, Uniform convergence of the multigrid \?-cycle for an anisotropic problem, Math. Comp. 70 (2001), no. 234, 453 – 470. · Zbl 0967.65104
[19] Susanne C. Brenner and L. Ridgway Scott, The mathematical theory of finite element methods, Texts in Applied Mathematics, vol. 15, Springer-Verlag, New York, 1994. · Zbl 0804.65101
[20] Zhiqiang Cai and Seokchan Kim, A finite element method using singular functions for the Poisson equation: corner singularities, SIAM J. Numer. Anal. 39 (2001), no. 1, 286 – 299. · Zbl 0992.65122 · doi:10.1137/S0036142999355945
[21] Philippe G. Ciarlet, The finite element method for elliptic problems, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1978. Studies in Mathematics and its Applications, Vol. 4. · Zbl 0383.65058
[22] Martin Costabel, Boundary integral operators on curved polygons, Ann. Mat. Pura Appl. (4) 133 (1983), 305 – 326. · Zbl 0533.45009 · doi:10.1007/BF01766023
[23] Monique Dauge, Elliptic boundary value problems on corner domains, Lecture Notes in Mathematics, vol. 1341, Springer-Verlag, Berlin, 1988. Smoothness and asymptotics of solutions. · Zbl 0668.35001
[24] Stephan Dahlke and Ronald A. DeVore, Besov regularity for elliptic boundary value problems, Comm. Partial Differential Equations 22 (1997), no. 1-2, 1 – 16. · Zbl 0883.35018 · doi:10.1080/03605309708821252
[25] Ronald A. DeVore and George G. Lorentz, Constructive approximation, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 303, Springer-Verlag, Berlin, 1993. · Zbl 0797.41016
[26] Lawrence C. Evans, Partial differential equations, Graduate Studies in Mathematics, vol. 19, American Mathematical Society, Providence, RI, 1998. · Zbl 0902.35002
[27] Veronica Felli and Matthias Schneider, A note on regularity of solutions to degenerate elliptic equations of Caffarelli-Kohn-Nirenberg type, Adv. Nonlinear Stud. 3 (2003), no. 4, 431 – 443. · Zbl 1106.35025 · doi:10.1515/ans-2003-0402
[28] Donald A. French, The finite element method for a degenerate elliptic equation, SIAM J. Numer. Anal. 24 (1987), no. 4, 788 – 815. · Zbl 0633.65108 · doi:10.1137/0724051
[29] Jayadeep Gopalakrishnan and Joseph E. Pasciak, The convergence of V-cycle multigrid algorithms for axisymmetric Laplace and Maxwell equations, Math. Comp. 75 (2006), no. 256, 1697 – 1719. · Zbl 1119.65106
[30] P. Grisvard, Elliptic problems in nonsmooth domains, Monographs and Studies in Mathematics, vol. 24, Pitman (Advanced Publishing Program), Boston, MA, 1985. · Zbl 0695.35060
[31] P. Grisvard, Singularities in boundary value problems, Recherches en Mathématiques Appliquées [Research in Applied Mathematics], vol. 22, Masson, Paris; Springer-Verlag, Berlin, 1992. · Zbl 0766.35001
[32] W. B. Gu, C. Y. Wang, and B. Y. Liaw, Micro-macroscopic coupled modeling of batteries and fuel cells: Part 2. application to nickel-cadmium and nickel-metal hybrid cells, J. Electrochem. Soc. (1998).
[33] R. B. Kellogg, Notes on piecewise smooth elliptic boundary value problems, 2003.
[34] V. A. Kondrat\(^{\prime}\)ev, Boundary value problems for elliptic equations in domains with conical or angular points, Trudy Moskov. Mat. Obšč. 16 (1967), 209 – 292 (Russian).
[35] V. A. Kozlov, V. G. Maz\(^{\prime}\)ya, and J. Rossmann, Elliptic boundary value problems in domains with point singularities, Mathematical Surveys and Monographs, vol. 52, American Mathematical Society, Providence, RI, 1997. · Zbl 0947.35004
[36] V. A. Kozlov, V. G. Maz\(^{\prime}\)ya, and J. Rossmann, Spectral problems associated with corner singularities of solutions to elliptic equations, Mathematical Surveys and Monographs, vol. 85, American Mathematical Society, Providence, RI, 2001. · Zbl 0965.35003
[37] Michel Langlais, On the continuous solutions of a degenerate elliptic equation, Proc. London Math. Soc. (3) 50 (1985), no. 2, 282 – 298. · Zbl 0566.35052 · doi:10.1112/plms/s3-50.2.282
[38] Jeff E. Lewis and Cesare Parenti, Pseudodifferential operators of Mellin type, Comm. Partial Differential Equations 8 (1983), no. 5, 477 – 544. · Zbl 0532.35085 · doi:10.1080/03605308308820276
[39] H. Li, A. Mazzucato, and V. Nistor, Analysis of the finite element method for transmission/ mixed boundary value problems on general polygonal domains, submitted (2008). · Zbl 1205.65317
[40] H. Li and V. Nistor, Analysis of a modified Schrödinger operator in 2D: regularity, index, and FEM, J. Comput. Appl. Math., 2008, DOI:10.1016/j.cam.2008.05.009. · Zbl 1165.65079
[41] J. M. Melenk and I. Babuška, The partition of unity finite element method: basic theory and applications, Comput. Methods Appl. Mech. Engrg. 139 (1996), no. 1-4, 289 – 314. · Zbl 0881.65099 · doi:10.1016/S0045-7825(96)01087-0
[42] Sergey A. Nazarov and Boris A. Plamenevsky, Elliptic problems in domains with piecewise smooth boundaries, De Gruyter Expositions in Mathematics, vol. 13, Walter de Gruyter & Co., Berlin, 1994. · Zbl 0806.35001
[43] Shmuel Rippa, Long and thin triangles can be good for linear interpolation, SIAM J. Numer. Anal. 29 (1992), no. 1, 257 – 270. · Zbl 0748.65011 · doi:10.1137/0729017
[44] A. H. Schatz and L. B. Wahlbin, Maximum norm estimates in the finite element method on plane polygonal domains. I, Math. Comp. 32 (1978), no. 141, 73 – 109. , https://doi.org/10.1090/S0025-5718-1978-0502065-1 A. H. Schatz and L. B. Wahlbin, Maximum norm estimates in the finite element method on plane polygonal domains. II. Refinements, Math. Comp. 33 (1979), no. 146, 465 – 492. · Zbl 0382.65058
[45] A. H. Schatz and L. B. Wahlbin, Maximum norm estimates in the finite element method on plane polygonal domains. I, Math. Comp. 32 (1978), no. 141, 73 – 109. , https://doi.org/10.1090/S0025-5718-1978-0502065-1 A. H. Schatz and L. B. Wahlbin, Maximum norm estimates in the finite element method on plane polygonal domains. II. Refinements, Math. Comp. 33 (1979), no. 146, 465 – 492. · Zbl 0382.65058
[46] Michael E. Taylor, Partial differential equations, Texts in Applied Mathematics, vol. 23, Springer-Verlag, New York, 1996. Basic theory. Michael E. Taylor, Partial differential equations. I, Applied Mathematical Sciences, vol. 115, Springer-Verlag, New York, 1996. Basic theory. · Zbl 0869.35001
[47] Lars B. Wahlbin, On the sharpness of certain local estimates for \ocirc\?\textonesuperior projections into finite element spaces: influence of a re-entrant corner, Math. Comp. 42 (1984), no. 165, 1 – 8. · Zbl 0539.65078
[48] C. Y. Wang, W. B. Gu, and B. Y. Liaw, Micro-macroscopic coupled modeling of batteries and fuel cells: Part 1. model development, J. Electrochem. Soc. (1998).
[49] Jinchao Xu, Iterative methods by space decomposition and subspace correction, SIAM Rev. 34 (1992), no. 4, 581 – 613. · Zbl 0788.65037 · doi:10.1137/1034116
[50] Kôsaku Yosida, Functional analysis, 5th ed., Springer-Verlag, Berlin-New York, 1978. Grundlehren der Mathematischen Wissenschaften, Band 123.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.