×

Optimal and robust waveform design for MIMO radars in the presence of clutter. (English) Zbl 1197.94097

Summary: Waveform design for target identification and classification in MIMO radar systems has been studied in several recent works. While the previous works assumed that the noise was independent of the transmission signals, here we extend the results to the signal dependent noise (clutter). We consider two scenarios. In the first scenario it is assumed that different transmit antennas see uncorrelated aspects of the target. In the second scenario, we consider the correlated target. As clutter is dependent to signal, target estimation error cannot vanish only by increasing the transmission power. It can be shown that in the second scenario, MIMO radar receiver can nullify the clutter subspace. Thus, in the second scenario, target estimation error tends to zero if the transmission power tends to infinity. We consider waveform design problem for these scenarios based on MMSE and MI criteria. Like previous works, we find that these criteria lead to the same solution. Our problems lead to the convex optimization problems, which can be efficiently solved through tractable numerical methods. Closed-form solutions are also developed for this SDP problem in two cases. In the first case, target and clutter covariance matrices are jointly diagonalizable and in the second, signal to noise ratio (SNR) is assumed to be sufficiently high. We also present two suboptimal formulations which require less knowledge of the statistical model of the target. In the first one the robust waveforms are computed by minimizing the estimation error of the worst-case target realization and in the second, target estimation error of the scaled least square (SLS) estimator is minimized.

MSC:

94A12 Signal theory (characterization, reconstruction, filtering, etc.)

Software:

SeDuMi; YALMIP
Full Text: DOI

References:

[1] Balakrishnan, A. V.: Signal design for a class of clutter channels, IEEE trans. Inf. theory 14, No. 1, 170-173 (January 1968)
[2] Rummler, W. D.: A technique for improving the clutter performance of coherent pulse trains, IEEE trans. Aerosp. electron. Syst. 3, 898-906 (1967)
[3] Rummler, W. D.: Clutter suppression by complex weighting of coherent pulse trains, IEEE trans. Aerosp. electron. Syst. 2, 689-699 (1966)
[4] Castella, F. R.; Moore, J. R.: Improved target detection in a littoral environment, Proc. radar 97, 429-433 (October 1997)
[5] Kay, S.: Optimal signal design for detection of Gaussian point targets in stationary Gaussian clutter/reverberation, IEEE J. Sel. top. Signal proc. 1, No. 1, 31-41 (June 2007)
[6] Fishler, E.; Haimovich, A.; Blum, R. S.; Jr., L. J. Cimini; Chizhik, D.; Valenzuela, R. A.: Spatial diversity in radars–models and detection performance, IEEE trans. Signal process. 54, No. 3, 823-838 (March 2006) · Zbl 1373.94779
[7] E. Fishler, A. Haimovich, R.S. Blum, D. Chizhik, L. Cimini, R. Valenzuela, Statistical MIMO radar , in: Proceedings of the 12th Annual Workshop on Adaptive Sensor Array Processing, Lexington, MA, March 2003.
[8] E. Fishler, A. Haimovich, R.S. Blum, D. Chizhik, L. Cimini, R. Valenzuela, MIMO radar: an idea whose time has come, in: Proceedings of 2004 IEEE Radar Conference, Philadelphia, PA, April 2004. · Zbl 1391.94288
[9] E. Fishler, A. Haimovich, R.S. Blum, L. Cimini, D. Chizhik, R. Valenzuela, Performance of MIMO radar systems: advantages of angular diversity, in: Proceedings of the 38th Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, November 2004. · Zbl 1373.94779
[10] F. Robey, S. Coutts, D. Weikle, J. McHarg, K. Cuomo, MIMO radar theory and experimental results, in: Proceedings of the 38th Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, November 2004.
[11] K. Forsythe, D. Bliss, G. Fawcett, Multiple-input multiple-ouput (MIMO) radar: performance issues, in: Proceedings of the 38th Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, November 2004.
[12] D.J. Bliss, K. Forsythe, Multiple-input multiple-output (MIMO) radar and imaging: degrees of freedom and resolution, in: Proceedings of the 37th Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, November 2003.
[13] D. Rabideau, P. Parker, Ubiquitous MIMO digital array radar, in: Proceedings of the 37th Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, November 2003.
[14] N.H. Lehmann, A.M. Haimovich, R.S. Blum, L.J. Cimini, High resolution capabilities of MIMO radar, in: Proceedings of the 40th Asilomar Conference on Signals, Systems and Computers, November 2006, pp. 25–30.
[15] J. Li, P. Stoica, MIMO radar–diversity means superiority, presented at the 14th Annual Conference on Adaptive Sensor Array Process, MIT Lincoln Laboratory, Lexington, MA, June 2006.
[16] J. Li, P. Stoica, L. Xu, W. Roberts, On parameter identifiability of MIMO radar, IEEE Signal Process. Lett. 14 (12) (2007) 968–971.
[17] V. Mecca, D. Ramakrishnan, J. Krolik, MIMO radar space-time adaptive processing for multipath clutter mitigation, in: IEEE Sensor Array and Multichannel Signal Processing Workshop, July 2006, pp. 249–253.
[18] L. Xu, J. Li, P. Stoica, Adaptive techniques for MIMO radar, IEEE Sensor Array and Multichannel Signal Processing Workshop, July 2006, pp. 258–262.
[19] D.R. Fuhrmann, G. San Antonio, Transmit beamforming for MIMO radar systems using partial signal correlations, in: Proceedings of the 38th Asilomar Conference on Signals, Systems and Computers, vol. 1, Pacific Grove, CA, November 2004, pp. 295–299.
[20] J. Li, P. Stoica, Y. Xie, On probing signal design for MIMO radar (Invited Paper), presented at the 40th Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, October 2006. · Zbl 1390.94422
[21] K.W. Forsythe, D.W. Bliss, Waveform correlation and optimization issues for MIMO radar, in: Proceedings of the 39th Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, November 2005, pp. 1306–1310.
[22] Li, J.; Xu, L.; Stoica, P.; Forsythe, K. W.; Bliss, D. W.: Range compression and waveform optimization for MIMO radar: a cramér–Rao bound based study, IEEE trans. Signal process. 56, No. 1, 218-232 (January 2008) · Zbl 1390.94268
[23] Yang, Y.; Blum, R. S.: MIMO radar waveform design based on MI and MMSE, IEEE trans. Aerosp. electron. Syst. 43, No. 1, 330-342 (January 2007)
[24] De Maio, A.; Lops, M.: Design principles of MIMO radar detectors, IEEE trans. Aerosp. electron. Syst. 43, No. 3 (July 2007)
[25] A. Leshem, A. Nehorai, Information theoretic design of multiple waveforms for multiple target estimation, Special Session on Waveform Adaptive Sensing, 2006 Conference on Information Sciences and Systems. Princeton, USA, March 2006.
[26] Friedlander, B.: Waveform design for MIMO radars, IEEE trans. Aerosp. electron. Syst. 43, No. 3, 1227-1238 (July 2007)
[27] Eldar, Y. C.; Oppenheim, A. V.: Covariance shaping least-squares estimation, IEEE trans. Signal process. 51, No. 3, 686-697 (March 2003)
[28] Eldar, Y. C.; Ben-Tal, A.; Nemirovski, A.: Linear minimax regret estimation of deterministic parameters with bounded data uncertainties, IEEE trans. Signal process. 52, 2177-2188 (August 2004) · Zbl 1369.93592
[29] Mayer, L. S.; Willke, T. A.: On biased estimation in linear models, Technometrics 15, 497-508 (August 1973) · Zbl 0265.62017 · doi:10.2307/1266855
[30] Van Trees, H. L.: Detection, estimation, and modulation theory, Detection, estimation, and modulation theory (1968) · Zbl 0202.18002
[31] Skolnik, M.: Introduction to radar systems, (2002)
[32] E.G. Larsson, P. Stoica, Space-time block coding for wireless communications, Cambridge. · Zbl 1077.94002
[33] Kay, S. M.: Fundamentals of statistical signal processing: estimation theory, (1993) · Zbl 0803.62002
[34] Horn, R. A.; Johnson, C. R.: Matrix analysis, (1985) · Zbl 0576.15001
[35] Biguesh, M.; Gershman, A. B.: Training-based MIMO channel estimation: a study of estimator tradeoffs and optimal training signals, IEEE trans. Signal process. 54, 884-893 (March 2006) · Zbl 1373.94543
[36] Vandenberghe, L.; Boyd, S.: Semidefinite programming, SIAM rev. 38, No. 1, 40-95 (March 1996) · Zbl 0845.65023 · doi:10.1137/1038003
[37] Nesterov, Y.; Nemirovski, A.: Interior-point polynomial algorithms in convex programming, (1994) · Zbl 0824.90112
[38] J.F. Sturm, Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones, Optimization Methods and Software Online, vol. 11–12, pp. 625–653, October 1999 [Online]. Available: \langlehttp://www2.unimaas.nl/sturm/software/sedumi.html angle.
[39] J. Löfberg, YALMIP: A toolbox for modeling and optimization in MATLAB, in: Proceedings of the 2004 IEEE International Symposium on Computer Aided Control System Design, Taipei, Taiwan, ROC, September 2004, pp. 284–289 [Online]. Available: \langlehttp://control.ee.ethz.ch/joloef/yalmip.php angle.
[40] Ohno, S.; Giannakis, G. B.: Capacity maximizing MMSE-optimal pilots for wireless OFDM over frequency-selective block Rayleigh-fading channels, IEEE trans. Inf. theory 50, 2138-2145 (September 2004) · Zbl 1315.94042
[41] Adireddy, S.; Tong, L.; Viswanathan, H.: Optimal placement of training for frequency-selective block-fading channels, IEEE trans. Inf. theory 48, 2338-2353 (August 2002) · Zbl 1062.94540 · doi:10.1109/TIT.2002.800466
[42] Dong, M.; Tong, L.: Optimal design and placement of pilot symbols for channel estimation, IEEE trans. Signal process. 50, 3055-3069 (December 2002)
[43] Lütkepohl, H.: Handbook of matrices, (1996) · Zbl 0856.15001
[44] Lehmann, N.; Fishler, E.; Haimovich, A. M.; Blum, R. S.; Chizhik, D.; Cimini, L.; Valenzuela, R.: Evaluation of transmit diversity in MIMO-radar direction finding, IEEE trans. Signal process. 55, No. 2, 2215-2225 (2007) · Zbl 1391.94288
[45] Meyer, C. D.: Matrix analysis and applied linear algebra, (2000) · Zbl 0962.15001
[46] Bell, M. R.: Information theory and radar waveform design, IEEE trans. Inf. theory 39, 1578-1597 (September 1993) · Zbl 0798.94008 · doi:10.1109/18.259642
[47] L. Vandenberghe, S. Boyd, S.-P. Wu, Determinant maximization with linear matrix inequality constraints, SIAM J. Matrix Anal. Appl. 19 (2) (1998) 499–533. · Zbl 0959.90039 · doi:10.1137/S0895479896303430
[48] G.B. Giannakis, S. Zhou, Optimal transmit-diversity precoders for random fading channels, in: Proceedings of the IEEE Global Telecommunications Conference, 2000, pp. 1839–1843.
[49] Vandenberghe, L.; Boyd, S.: Semidefinite programming, SIAM rev. 31, 49-95 (1996) · Zbl 0845.65023 · doi:10.1137/1038003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.