×

On a novel connectivity index. (English) Zbl 1197.92060

Summary: We present a novel connectivity index for (molecular) graphs, called sum-connectivity index and give several basic properties for this index, especially lower and upper bounds in terms of graph (structural) invariants. It appears that this and the original Randić connectivity index that we call product-connectivity index are highly intercorrelated molecular descriptors, the value of the correlation coefficient being 0.991 for trees representing lower alkanes. We determine the unique tree with fixed numbers of vertices and pendant vertices with the minimum value of the sum-connectivity index, and trees with the minimum, second minimum and third minimum, and the maximum, second maximum and third maximum values of this index. Additionally, we discuss the properties of this novel connectivity index for a class of trees representing acyclic hydrocarbons.

MSC:

92E10 Molecular structure (graph-theoretic methods, methods of differential topology, etc.)
05C90 Applications of graph theory
05C40 Connectivity
Full Text: DOI

References:

[1] Randić M.: On characterization of molecular branching. J. Am. Chem. Soc. 97, 6609–6615 (1975) · doi:10.1021/ja00856a001
[2] Kier L.B., Hall L.H.: Molecular Connectivity in Chemistry and Drug Research. Academic Press, New York (1976)
[3] Kier L.B., Hall L.H.: Molecular Connectivity in Structure-Activity Analysis. Research Studies Press/Wiley, Letchworth/New York (1986)
[4] R. Todeschini, V. Consonni, Handbook of Molecular Descriptors (Wiley-VCH, Weinheim, 2000)
[5] Pogliani L.: From molecular connectivity indices to semiempirical connectivity terms: Recent trends in graph theoretical descriptors. Chem. Rev. 100, 3827–3858 (2000) · doi:10.1021/cr0004456
[6] Garcia-Domenech R., Galvez J., de Julian-Ortiz J.V., Pogliani L.: Some new trends in chemical graph theory. Chem. Rev. 108, 1127–1169 (2008) · doi:10.1021/cr0780006
[7] Randić M.: On history of the Randić index and emerging hostility toward chemical graph theory. MATCH Commun. Math. Comput. Chem. 59, 5–124 (2008) · Zbl 1150.01007
[8] Kier L.B., Hall L.H., Murray W.J., Randić M.: Molecular-connectivity I: Relationship to nonspecific local anesthesia. J. Pharm. Sci. 64, 1971–1974 (1975) · doi:10.1002/jps.2600641214
[9] Bollobás B., Erdös P.: Graphs of extremal weights. Ars Comb. 50, 225–233 (1998) · Zbl 0963.05068
[10] Bollobás B., Erdös P., Sarkar A.: Extremal graphs for weights. Discr. Math. 200, 5–19 (1999) · Zbl 0933.05081 · doi:10.1016/S0012-365X(98)00320-3
[11] I. Gutman, Chemical graph theory–The mathematical connection, in Advances in Quantum Chemistry, vol. 51, ed. by J.R. Sabin, E.J. Brändas (Elsevier, Amsterdam, 2006), pp. 125–138
[12] Rada J., Uzcátegui C.: Randić ordering of chemical trees. Discr. Appl. Math. 150, 232–250 (2005) · Zbl 1071.92050 · doi:10.1016/j.dam.2005.02.014
[13] X. Li, I. Gutman, Mathematical Aspects of Randić-Type Molecular Structure Descriptors (University of Kragujevac, Kragujevac, 2006) · Zbl 1294.92032
[14] Pepper R., Klein D.J.: Some theorems about the Randić connectivity index. MATCH Commun. Math. Comput. Chem. 58, 359–364 (2007) · Zbl 1164.05014
[15] Li X., Shi Y.: A survey on the Randić index. MATCH Commun. Math. Comput. Chem. 59, 127–156 (2008) · Zbl 1249.05198
[16] I. Gutman, B. Furtula (eds.), Recent Results in the Theory of Randić Index (University of Kragujevac, Kragujevac, 2008)
[17] Randić M.: The connectivity index 25 years after. J. Mol. Graph. Modell. 20, 19–35 (2001) · doi:10.1016/S1093-3263(01)00098-5
[18] Bonchev D.: Overall connectivity–a next generation molecular connectivity. J. Mol. Graph. Modell. 20, 65–75 (2001) · doi:10.1016/S1093-3263(01)00101-2
[19] Estrada E.: Edge adjacency relationships and a novel topological index related to molecular volume. J. Chem. Inform. Comput. Sci. 35, 31–33 (1995)
[20] Nikolić S., Trinajstić N., Baučić I.: Comparison between the vertex- and edge-connectivity indices for benzenoid hydrocarbons. J. Chem. Inform. Comput. Sci. 38, 42–46 (1998)
[21] Amić D., Davidovic-Amić D., Bešlo D., Lučić B., Trinajstić N., Nikolić S.: The vertex-connectivity index revisited. J. Chem. Inform. Comput. Sci. 38, 819–822 (1998)
[22] Stankevich V., Skvortsova M.I., Zefirov N.S.: On a quantum chemical interpretation of molecular connectivity indices for conjugated hydrocarbons. J. Mol. Struct. (THEOCHEM) 342, 173–179 (1995) · doi:10.1016/0166-1280(95)90111-6
[23] Galvez J.: On a topological interpretation of electronic and vibrational molecular energies. J. Mol. Struct. (THEOCHEM) 429, 255–264 (1998) · doi:10.1016/S0166-1280(97)00366-7
[24] Estrada E.: Physicochemical interpretation of molecular connectivity indices. J. Phys. Chem. A 106, 9085–9091 (2002) · doi:10.1021/jp026238m
[25] Klein D.J., Palacios J.L., Randić M., Trinajstić N.: Random walks and chemical graph theory. J. Chem. Inform. Comput. Sci. 44, 1521–1525 (2004)
[26] B. Zhou, D. Vukičević, On general Randić and general zeroth-order Randić indices. MATCH Commun. Math. Comput. Chem. 62, in press (2009)
[27] Gutman I., Trinajstić N.: Graph theory and molecular orbitals. Total {\(\pi\)}-electron energy of alternant hydrocarbons. Chem. Phys. Lett. 17, 535–538 (1972)
[28] Gutman I., Ruščić B., Trinajstić N., Wilcox C.F. Jr.: Graph theory and molecular orbitals. XII. Acyclic polyenes. J. Phys. Chem. 62, 3399–3405 (1975) · doi:10.1063/1.430994
[29] S.C. Basak, G.D. Grunwald, G.J. Niemi, Use of graph-theoretic geometric molecular descriptors in structure-activity relationships, in From Chemical Topology to Three-Dimensional Geometry, ed. by A.T. Balaban (Plenum Press, New York, 1997), pp. 73–116
[30] S.C. Basak, B.D. Gute, G.D. Grunwald, A hierarchical approach to the development of QSAR models using topological, geometrical and quantum chemical parameters, in Topological Indices and Related Descriptors in QSAR and QSPR, ed. by J. Devillers, A.T. Balaban (Gordon & Breach, Amsterdam, 1999), pp. 675–696
[31] A.T. Balaban, I. Motoc, D. Bonchev, O. Mekenyan, Topological indices for structure–activity correlations, in Steric Effects in Drug Design, ed. by M. Charton, I. Motoc (Topics in Current Chemistry 114, Springer, Berlin, 1983), pp. 21–55
[32] Gutman I., Das K.C.: The first Zagreb index 30 years after. MATCH Commun. Math. Comput. Chem. 50, 83–92 (2004) · Zbl 1053.05115
[33] Das K.C., Gutman I.: Some properties of the second Zagreb index. MATCH Commun. Math. Comput. Chem. 52, 103–112 (2004) · Zbl 1077.05094
[34] Zhou B.: Zagreb indices. MATCH Commun. Math. Comput. Chem. 50, 113–118 (2004) · Zbl 1077.05519
[35] Vukičević D., Trinajstić N.: On the discriminatory power of the Zagreb indices for molecular graphs. MATCH Commun. Math. Comput. Chem. 53, 111–138 (2005) · Zbl 1079.05095
[36] Zhou B., Gutman I.: Further properties of Zagreb indices. MATCH Commun. Math. Comput. Chem. 54, 233–239 (2005) · Zbl 1087.05057
[37] Hansen P., Vukičević D.: Comparing the Zagreb indices. Croat. Chem. Acta 80, 165–168 (2007)
[38] Nikolić S., Kovačević G., Miličević A., Trinajstić N.: The Zagreb indices 30 years after. Croat. Chem. Acta 76, 113–124 (2003)
[39] Vukičević D., Trinajstić N.: Modified Zagreb M2 index–Comparison with Randić connectivity index of benzenoid systems. Croat. Chem. Acta 76, 183–187 (2003)
[40] Miličević A., Nikolić S.: On variable Zagreb indices. Croat. Chem. Acta 77, 97–101 (2004)
[41] F. Harary, Graph Theory, 2nd printing (Addison-Wesley, Reading, MA, 1971) · Zbl 0209.55404
[42] Wilson R.J.: Introduction to Graph Theory. Oliver and Boyd, Edinburgh (1972) · Zbl 0249.05101
[43] Trinajstić N.: Chemical Graph Theory, 2nd edn. CRC Press, Boca Raton (1992)
[44] Ivanciuc O., Ivanciuc T., Cabrol-Bass D., Balaban A.T.: Evaluation in quantitative structure–property relationship models of structural descriptors derived from information-theory operators. J. Chem. Inform. Comput. Sci. 40, 631–643 (2000)
[45] de Caen D.: An upper bound on the sum of squares of degrees in a graph. Discr. Math. 185, 245–248 (1998) · Zbl 0955.05059 · doi:10.1016/S0012-365X(97)00213-6
[46] Li J., Pan Y.: de Caen’s inequality and bounds on the largest Laplacian eigenvalue of a graph. Linear Algebr. Appl. 328, 153–160 (2001) · Zbl 0988.05062 · doi:10.1016/S0024-3795(00)00307-4
[47] Das K.C.: Maximizing the sum of the squares of the degrees of a graph. Discr. Math. 285, 57–66 (2004) · Zbl 1051.05033 · doi:10.1016/j.disc.2004.04.007
[48] Zhou B., Stevanović D.: A note on Zagreb indices. MATCH Commun. Math. Comput. Chem. 56, 571–578 (2006) · Zbl 1119.05307
[49] Caporossi G., Gutman I., Hansen P., Pavlović L.: Graphs with maximum connectivity index. Comput. Biol. Chem. 27, 85–90 (2003) · doi:10.1016/S0097-8485(02)00016-5
[50] Hansen P., Mélot H.: Variable neighborhood search for extremal graphs, 6. Analyzing bounds for the connectivity index. J. Chem. Inform. Comput. Sci. 43, 1–14 (2003)
[51] Gutman I., Polanski O.E.: Mathematical Concepts in Organic Chemistry. Springer, Berlin (1986) · Zbl 0657.92024
[52] Gutman I., Miljković O., Caporossi G., Hansen P.: Alkanes with small and large Randić connectivity indices. Chem. Phys. Lett. 306, 366–372 (1999) · doi:10.1016/S0009-2614(99)00472-8
[53] Gutman I., Miljković O.: Molecules with smallest connectivity indices. MATCH Commun. Math. Comput. Chem. 41, 57–70 (2000) · Zbl 1036.92043
[54] Gutman I.: Molecular graphs with minimal and maximal Randić indices. Croat. Chem. Acta 75, 357–369 (2002)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.