×

Spin-statistics transmutation in quantum field theory. (English) Zbl 1197.81160

Summary: Spin-statistics transmutation is the phenomenon occurring when a “dressing” transformation introduced for physical reasons (e.g., gauge invariance) modifies the “bare” spin and statistics of particles or fields. Historically, it first appeared in quantum mechanics and in semiclassical approximation to quantum field theory. After a brief historical introduction, we sketch how to describe such a phenomenon in quantum field theory beyond the semiclassical approximation using a path-integral formulation for Euclidean correlation functions exemplifying with anyons, dyons and skyrmions.

MSC:

81T05 Axiomatic quantum field theory; operator algebras
81S40 Path integrals in quantum mechanics
81R20 Covariant wave equations in quantum theory, relativistic quantum mechanics
Full Text: DOI

References:

[1] Tamm, I.: Die verallgemeinerten Kugelfunktionen und die Wellenfunktionen eines Elektrons im Felde eines Magnetpoles. Z. Phys. 71, 141–150 (1931) · Zbl 0002.40501 · doi:10.1007/BF01341701
[2] Dirac, P.A.M.: Quantized Singularities in the Electromagnetic Field. Proc. R. Soc. A 133, 60–72 (1931) · Zbl 0002.30502 · doi:10.1098/rspa.1931.0130
[3] Hurst, C.A.: Charge quantization and nonintegrable Lie algebras. Ann. Phys. 50, 51–75 (1968) · Zbl 0162.58202 · doi:10.1016/0003-4916(68)90316-3
[4] Jackiw, R., Rebbi, C.: Solitons with Fermion number 1/2. Phys. Rev. D 13, 3398–3409 (1976) · doi:10.1103/PhysRevD.13.3398
[5] Jackiw, R., Rebbi, C.: Spin from isospin in a gauge theory. Phys. Rev. Lett. 36, 1116–1119 (1976) · doi:10.1103/PhysRevLett.36.1116
[6] Hasenfratz, P., ’t Hooft, G.: A Fermion-Boson puzzle in a gauge theory. Phys. Rev. Lett. 36, 1119–1122 (1976) · doi:10.1103/PhysRevLett.36.1119
[7] Goldhaber, A.: Connection of spin and statistics for charge-monopole composites. Phys. Rev. Lett. 36, 1122–1125 (1976) · doi:10.1103/PhysRevLett.36.1122
[8] Friedman, J.L., Sorkin, R.D.: Dyon spin and statistics: a fiber bundle theory of interacting magnetic and electric charges. Phys. Rev. D 20, 2511–2525 (1979) · doi:10.1103/PhysRevD.20.2511
[9] Friedman, J.L., Sorkin, R.D.: A spin statistics theorem for composites containing both electric and magnetic charges. Commun. Math. Phys. 73, 161–196 (1980) · doi:10.1007/BF01198122
[10] Wilczek, F.: Magnetic flux, angular momentum, and statistics. Phys. Rev. Lett. 48, 1144–1146 (1982) · doi:10.1103/PhysRevLett.48.1144
[11] Wilczek, F.: Quantum mechanics of fractional-spin particles. Phys. Rev. Lett. 49, 957–959 (1982) · doi:10.1103/PhysRevLett.49.957
[12] Polyakov, A.M.: Fermi-Bose transmutations induced by gauge fields. Mod. Phys. Lett. A 3, 325–328 (1988) · doi:10.1142/S0217732388000398
[13] Wilczek, F., Zee, A.: Linking numbers, spin, and statistics of solitons. Phys. Rev. Lett. 51, 2250–2252 (1983) · doi:10.1103/PhysRevLett.51.2250
[14] Finkelstein, D., Rubinstein, J.: Connection between spin, statistics, and kinks. J. Math. Phys. 9, 1762–1779 (1968) · Zbl 0167.56205 · doi:10.1063/1.1664510
[15] Kauffman, L.H.: On Knots. Ann. Math. Studies, vol. 115. Princeton University Press, Princeton (1987) · Zbl 0627.57002
[16] Ehrenberg, W., Siday, R.E.: The refractive index in electron optics and the principles of dynamics. Proc. Phys. Soc. B 62, 8–21 (1949) ; · Zbl 0032.23301 · doi:10.1088/0370-1301/62/1/303
[17] Aharonov, Y., Bohm, D.: Significance of electromagnetic potentials in quantum theory. Phys. Rev. 115, 485–491 (1959) · Zbl 0099.43102 · doi:10.1103/PhysRev.115.485
[18] Bargmann, V.: Irreducible unitary representations of the Lorentz group. Ann. Math. 48, 568–640 (1947) · Zbl 0045.38801 · doi:10.2307/1969129
[19] Birman, J.: Braids, Links and Mapping Class Group. Ann. Math. Studies, vol. 82. Princeton University Press, Princeton (1974)
[20] Leinaas, J.M., Myrheim, J.: On the theory of identical particles. Nuovo Cimento B 37, 1–23 (1977) · doi:10.1007/BF02727953
[21] Goldin, G.A., Menikoff, R., Sharp, D.H.: Representations of a local current algebra in nonsimply connected space and the Aharonov-Bohm effect. J. Math. Phys. 22, 1664–1668 (1981) · doi:10.1063/1.525110
[22] Hatcher, A.: Algebraic Topology. Cambridge University Press, Cambridge (2002) · Zbl 1044.55001
[23] Skyrme, T.H.R.: A unified field theory of mesons and baryons. Nucl. Phys. 31, 556–569 (1962) · doi:10.1016/0029-5582(62)90775-7
[24] Witten, E.: Global aspects of current algebra. Nucl. Phys. B 223, 422–432 (1983) · doi:10.1016/0550-3213(83)90063-9
[25] Witten, E.: Current algebra, baryons, and quark confinement. Nucl. Phys. B 223, 433–444 (1983) · doi:10.1016/0550-3213(83)90064-0
[26] Feynman, R.P.: Space-time approach to nonrelativistic quantum mechanics. Rev. Mod. Phys. 20, 367–387 (1948) · Zbl 1371.81126 · doi:10.1103/RevModPhys.20.367
[27] Schwinger, J.: On gauge invariance and vacuum polarization. Phys. Rev. 82, 664–679 (1951) · Zbl 0043.42201 · doi:10.1103/PhysRev.82.664
[28] Dirac, P.A.M.: Gauge invariant formulation of quantum electrodynamics. Can. J. Phys. 33, 650–660 (1955) · Zbl 0068.22801
[29] Strocchi, F.: Spontaneous symmetry breaking in local gauge quantum field theory: the Higgs mechanism. Commun. Math. Phys. 56, 57–78 (1977) · Zbl 1155.81342 · doi:10.1007/BF01611117
[30] Morchio, G., Strocchi, F.: Infrared problem, Higgs phenomenon and long range interactions. In: Velo, G., et al. (eds.) Fundamental Problems of Gauge Field Theory (Erice 1985), pp. 301–344. Plenum, New York (1986)
[31] Becchi, C., Rouet, A., Stora, R.: The Abelian Higgs-Kibble model. Unitarity of the S operator. Phys. Lett. B 52, 344–346 (1974) · doi:10.1016/0370-2693(74)90058-6
[32] Becchi, C., Rouet, A., Stora, R.: Renormalization of gauge theories. Ann. Phys. 98, 287–321 (1976) · doi:10.1016/0003-4916(76)90156-1
[33] Tyutin, I.V.: Gauge invariance in field theory and statistical mechanics. Lebedev preprint FIAN39 (1975)
[34] Kugo, T., Ojima, I.: Local covariant operator formalism of nonAbelian gauge theories and quark confinement problem. Prog. Theor. Phys. Suppl. 66, 1–130 (1979) · doi:10.1143/PTPS.66.1
[35] Froehlich, J., Marchetti, P.A.: Superselection sectors in quantum field models: Kinks in Phi4 in two-dimensions and charged states in lattice (Q.E.D.) in four-dimensions. In: Kastler, D. (ed.) Algebraic Theory of Superselection Sectors. Introduction and Recent Results, pp. 428–484. World Scientific, Singapore (1990)
[36] Candlin, D.J.: On sums over trajactories for systems with Fermi statistics. Nuovo Cimento 4, 231–239 (1956) · Zbl 0072.21801 · doi:10.1007/BF02745446
[37] Berezin, A.: The Method of Second Quantization. Academic Press, New York (1966) · Zbl 0151.44001
[38] Osterwalder, K., Schrader, R.: Axioms for Euclidean Green’s functions. Commun. Math. Phys. 31, 83–112 (1973) · Zbl 0274.46047 · doi:10.1007/BF01645738
[39] Osterwalder, K., Schrader, R.: Axioms for Euclidean Green’s functions. 2. Commun. Math. Phys. 42, 281–305 (1975) · Zbl 0303.46034 · doi:10.1007/BF01608978
[40] Seiler, E.: Gauge Theories as a Problem in Constructive Quantum Field Theory and Statistical Mechanics. Lecture Notes in Physics, vol. 159. Springer, Berlin (1982)
[41] Froehlich, J., Marchetti, P.A.: Quantum field theory of anyons. Lett. Math. Phys. 16, 347–358 (1988) · Zbl 0695.58031 · doi:10.1007/BF00402043
[42] Froehlich, J., Marchetti, P.A.: Quantum field theories of vortices and anyons. Commun. Math. Phys. 121, 177–223 (1989) · Zbl 0819.58045 · doi:10.1007/BF01217803
[43] Lechner, K., Marchetti, P.A.: Spin statistics transmutation in relativistic quantum field theories of dyons. J. High Energy Phys. 0012, 028 (2000). doi: 10.1088/1126-6708/2000/12/028 · Zbl 0990.81548 · doi:10.1088/1126-6708/2000/12/028
[44] Froehlich, J., Marchetti, P.A.: Quantum skyrmions. Nucl. Phys. B 335, 1–22 (1990) · doi:10.1016/0550-3213(90)90166-B
[45] Kruczenski, M., Oxman, L.: Covariant quantization of the skyrmion. Nucl. Phys. B 488, 513–538 (1997) · Zbl 0925.81408 · doi:10.1016/S0550-3213(97)81645-8
[46] Laughlin, R.B.: Anomalous quantum Hall effect: An incompressible quantum fluid with fractionally charged excitations. Phys. Rev. Lett. 50, 1395–1398 (1983) · doi:10.1103/PhysRevLett.50.1395
[47] Chakraborty, T., Pietilainen, P.: The Fractional Quantum Hall Effect. Springer, Berlin (1988)
[48] Chern, S.-S., Simons, J.: Characteristic forms and geometric invariants. Ann. Math. 99, 48–69 (1974) · Zbl 0283.53036 · doi:10.2307/1971013
[49] Marchetti, P.A.: Bosonization and duality in condensed matter systems. In: Barone, A., Devoto, A. (eds.) Proceedings of ”Common Trends in Condensed Matter and High Energy Physics”, Chia Laguna 1995, pp. 178–188. Istituto Italiano per gli studi Filosofici, Napoli (2000) (Also in arXiv:hep-th/9511100 )
[50] Schonfeld, J.F.: A mass term for three-dimensional gauge fields. Nucl. Phys. B 185, 157–171 (1981) · doi:10.1016/0550-3213(81)90369-2
[51] Deser, S., Jackiw, R., Templeton, S.: Topologically massive gauge theories. Ann. Phys. 140, 372–411 (1982) · doi:10.1016/0003-4916(82)90164-6
[52] Buchholz, D., Fredenhagen, K.: Locality and the structure of particle states. Commun. Math. Phys. 84, 1–54 (1982) · Zbl 0498.46061 · doi:10.1007/BF01208370
[53] Seiberg, N., Witten, E.: Electric–magnetic duality, monopole condensation, and confinement in N=2 supersymmetric Yang-Mills theory. Nucl. Phys. B 426, 19–52 (1994) · Zbl 0996.81510 · doi:10.1016/0550-3213(94)90124-4
[54] Dirac, P.A.M.: The theory of magnetic poles. Phys. Rev. 74, 817–830 (1948) · Zbl 0034.27604 · doi:10.1103/PhysRev.74.817
[55] Schwinger, J.: Magnetic charge and quantum field theory. Phys. Rev. 144, 1087–1093 (1966) · doi:10.1103/PhysRev.144.1087
[56] Schwinger, J.: Magnetic charge and the charge quantization condition. Phys. Rev. D 12, 3105–3111 (1975) · doi:10.1103/PhysRevD.12.3105
[57] de Rham, G.: Differentiable Manifolds. Forms, Currents, Harmonic Forms. Springer, Berlin (1984) · Zbl 0534.58003
[58] Mandelstam, S.: Quantum electrodynamics without potentials. Ann. Phys. 19, 1–24 (1962) · Zbl 0107.22802 · doi:10.1016/0003-4916(62)90232-4
[59] Froehlich, J., Marchetti, P.A.: Gauge invariant charged, monopole and dyon fields in gauge theories. Nucl. Phys. B 511, 770–812 (1999) · Zbl 0947.81040 · doi:10.1016/S0550-3213(99)00230-8
[60] Belavin, V.A., Chernodub, M.N., Polikarpov, M.I.: Numerical study of Froehlich and Marchetti monopole creation operator. Nucl. Phys. Proc. Suppl. 106, 610–612 (2002) · Zbl 1097.81576 · doi:10.1016/S0920-5632(01)01793-5
[61] Froehlich, J., Marchetti, P.A.: Soliton quantization in lattice field theories. Commun. Math. Phys. 112, 343–383 (1987) · Zbl 0625.58038 · doi:10.1007/BF01217817
[62] Froehlich, J., Marchetti, P.A.: Bosonization, topological solitons and fractional charges in two-dimensional quantum field theory. Commun. Math. Phys. 116, 127–173 (1988) · Zbl 0651.58044 · doi:10.1007/BF01239028
[63] Marino, E.C., Schroer, B., Swieca, J.A.: Euclidean functional integral approach for disorder variables and kinks. Nucl. Phys. B 200, 473–497 (1982) · doi:10.1016/0550-3213(82)90523-5
[64] Belavin, A.A., Polyakov, A.M., Schwartz, A.S., Tyupkin, Y.S.: Pseudoparticle solution of the Yang-Mills equations. Phys. Lett. B 59, 85–87 (1975) · doi:10.1016/0370-2693(75)90163-X
[65] Wess, J., Zumino, B.: Consequences of anomalous Ward identities. Phys. Lett. B 37, 95–97 (1971) · doi:10.1016/0370-2693(71)90582-X
[66] Chou, K., Guo, H., Wu, K.: On the gauge invariance and anomaly free condition of Wess-Zumino-Witten effective action. Phys. Lett. B 134, 67–69 (1984) · doi:10.1016/0370-2693(84)90986-9
[67] Balachandran, A.P., Lizzi, F., Rodgers, V.E.J., Stern, A.: Dibaryons as chiral solitons. Nucl. Phys. B 256, 525–556 (1985) · doi:10.1016/0550-3213(85)90407-9
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.