×

Polymer-laden homogeneous shear-driven turbulent flow: a model for polymer drag reduction. (English) Zbl 1197.76060

Summary: Drag reduction (DR) under a turbulent boundary layer implies the suppression of turbulent momentum flux to the wall, a large-eddy phenomenon. Our hypothesis is that the essential mechanisms by which dilute concentrations of long-chain polymer molecules reduce momentum flux involve only the interactions among turbulent velocity fluctuations, polymer molecules and mean shear. Experiments indicate that these interactions dominate in a polymer-active ’elastic layer’ outside the viscous sublayer and below a Newtonian inertial layer in a polymer-laden turbulent boundary layer. We investigate our hypothesis by modelling the suppression of momentum flux with direct numerical simulation (DNS) of homogeneous turbulent shear flow (HTSF) and the finite extensible nonlinear elastic with Peterlin approximation (FENE-P) model for polymer stress. The polymer conformation tensor equation was solved using a new hyperbolic algorithm with no artificial diffusion. We report here on the equilibrium state with fixed mean shear rate \(S\), where progressive increases in non-dimensional polymer relaxation time \(We_S\) (shear Weissenberg number) or concentration parameter \(1 - \beta\) produced progressive reductions in Reynolds shear stress, turbulence kinetic energy and turbulence dissipation rate, concurrent with increasing polymer stress and elastic potential energy. The changes in statistical variables underlying polymer DR with \(1 - \beta, We-S\), %DR and polymer-induced changes to spectra are similar to experiments in channel and pipe flows and show that the experimentally measured increase in normalized streamwise velocity variance is an indirect consequence of DR that is true only at lower DR. Comparison of polymer stretch and elastic potential energy budgets with channel flow DNS showed qualitative correspondence when distance from the wall was correlated to \(We_S\). As \(We_S\) increased, the homogeneous shear flow displayed low-DR, high-DR and maximum-DR (MDR) regimes, similar to experiments, with each regime displaying distinctly different polymer-turbulence physics. The suppression of turbulent momentum flux arises from the suppression of vertical velocity fluctuations primarily by polymer-induced suppression of slow pressure-strain rate correlations. In the high-Weissenberg-number MDR-like limit, the polymer nearly completely blocks Newtonian inter-component energy transfer to vertical velocity fluctuations and turbulence is maintained by the polymer contribution to pressure-strain rate. Our analysis from HTSF with the FENE-P representation of polymer stress and its comparisons with experimental and DNS studies of wall-bounded polymer-turbulence supports our central hypothesis that the essential mechanisms underlying polymer DR lie directly in the suppression of momentum flux by polymer-turbulence interactions in the presence of mean shear and indirectly in the presence of the wall as the shear-generating mechanism.

MSC:

76F10 Shear flows and turbulence
76A05 Non-Newtonian fluids
Full Text: DOI

References:

[1] DOI: 10.1002/pol.1966.110040411 · doi:10.1002/pol.1966.110040411
[2] DOI: 10.1016/0377-0257(90)80015-R · doi:10.1016/0377-0257(90)80015-R
[3] DOI: 10.1016/0377-0257(86)80019-2 · Zbl 0629.76008 · doi:10.1016/0377-0257(86)80019-2
[4] DOI: 10.1017/S0022112003004610 · Zbl 1054.76041 · doi:10.1017/S0022112003004610
[5] DOI: 10.1017/S0022112004000291 · Zbl 1067.76052 · doi:10.1017/S0022112004000291
[6] DOI: 10.1063/1.1345882 · Zbl 1184.76137 · doi:10.1063/1.1345882
[7] DOI: 10.1017/S0022112003005597 · Zbl 1063.76579 · doi:10.1017/S0022112003005597
[8] DOI: 10.1016/S0377-0257(98)00115-3 · Zbl 0960.76057 · doi:10.1016/S0377-0257(98)00115-3
[9] DOI: 10.1002/aic.690280405 · doi:10.1002/aic.690280405
[10] DOI: 10.1063/1.1829751 · Zbl 1187.76127 · doi:10.1063/1.1829751
[11] DOI: 10.1063/1.862455 · doi:10.1063/1.862455
[12] Wu, Trans. ASME J. Basic Engng 94 pp 749– (1972) · doi:10.1115/1.3425541
[13] DOI: 10.1103/PhysRevLett.95.024503 · doi:10.1103/PhysRevLett.95.024503
[14] McComb, The Physics of Fluid Turbulence (1990) · Zbl 0748.76005
[15] Wu, Viscous Drag Reduction pp 331– (1969) · doi:10.1007/978-1-4899-5579-1_17
[16] DOI: 10.1016/j.fluiddyn.2004.12.004 · Zbl 1153.76367 · doi:10.1016/j.fluiddyn.2004.12.004
[17] L’vov, Phys. Rev. Lett. 92 pp 1– (2004)
[18] DOI: 10.1063/1.866278 · doi:10.1063/1.866278
[19] Bird, Dynamics of Polymeric Liquids (1987)
[20] DOI: 10.1002/pol.1973.230070104 · doi:10.1002/pol.1973.230070104
[21] DOI: 10.1146/annurev.fluid.40.111406.102156 · Zbl 1229.76043 · doi:10.1146/annurev.fluid.40.111406.102156
[22] DOI: 10.1017/S0022112005003666 · Zbl 1070.76030 · doi:10.1017/S0022112005003666
[23] DOI: 10.1146/annurev.fl.01.010169.002055 · doi:10.1146/annurev.fl.01.010169.002055
[24] Wei, J. Non-Newton. Fluid Mech. 245 pp 619– (1992) · doi:10.1017/S0022112092000600
[25] DOI: 10.1021/i160043a017 · doi:10.1021/i160043a017
[26] DOI: 10.1209/epl/i2005-10323-8 · doi:10.1209/epl/i2005-10323-8
[27] DOI: 10.1002/aic.690170228 · doi:10.1002/aic.690170228
[28] DOI: 10.1007/s003480050371 · doi:10.1007/s003480050371
[29] DOI: 10.1017/S0022112090000532 · doi:10.1017/S0022112090000532
[30] DOI: 10.1017/S0022112090001045 · doi:10.1017/S0022112090001045
[31] DOI: 10.1002/aic.690210402 · doi:10.1002/aic.690210402
[32] Larson, The Structure and Rheology of Complex Fluids (1999)
[33] DOI: 10.1017/S0022112071000120 · doi:10.1017/S0022112071000120
[34] Landahl, Proceedings of the 13th International Congress on Theoretical and Applied Mechanics pp 177– (1973) · doi:10.1007/978-3-642-65590-6_12
[35] DOI: 10.1017/S0022112071000028 · doi:10.1017/S0022112071000028
[36] DOI: 10.1006/jcph.2000.6459 · Zbl 0987.65085 · doi:10.1006/jcph.2000.6459
[37] DOI: 10.1017/S0022112007007033 · Zbl 1123.76006 · doi:10.1017/S0022112007007033
[38] DOI: 10.1017/S0022112086002070 · doi:10.1017/S0022112086002070
[39] DOI: 10.1016/j.jnnfm.2006.03.018 · Zbl 1143.76349 · doi:10.1016/j.jnnfm.2006.03.018
[40] Kim, Seventh Symposium on Turbulent Shear Flows pp 1.1.1– (1989)
[41] DOI: 10.1016/S0021-9991(03)00028-7 · Zbl 1047.76524 · doi:10.1016/S0021-9991(03)00028-7
[42] DOI: 10.1017/S0022112097004850 · doi:10.1017/S0022112097004850
[43] Toms, Proceedings of the 1st International Congress on Rheology pp 135– (1949)
[44] DOI: 10.1016/S0377-0257(96)01497-8 · doi:10.1016/S0377-0257(96)01497-8
[45] DOI: 10.1088/1367-2630/9/10/360 · doi:10.1088/1367-2630/9/10/360
[46] DOI: 10.1209/0295-5075/2/7/005 · doi:10.1209/0295-5075/2/7/005
[47] DOI: 10.1209/epl/i2002-00440-4 · doi:10.1209/epl/i2002-00440-4
[48] DOI: 10.1063/1.869229 · doi:10.1063/1.869229
[49] Hoyt, Trans. ASME J. Basic Engng 94 pp 258– (1971) · doi:10.1115/1.3425401
[50] Sureshkumar, Chem. Engng Sci. 51 pp 1451– (1997)
[51] Housiadas, Korean–Aust. J. Rheol. 17 pp 131– (2005)
[52] DOI: 10.1016/0377-0257(95)01377-8 · doi:10.1016/0377-0257(95)01377-8
[53] DOI: 10.1063/1.1589484 · Zbl 1186.76235 · doi:10.1063/1.1589484
[54] Spangler, Viscous Drag Reduction pp 131– (1969) · doi:10.1007/978-1-4899-5579-1_6
[55] DOI: 10.1098/rsta.1991.0064 · Zbl 0719.76518 · doi:10.1098/rsta.1991.0064
[56] DOI: 10.1017/S0022112087000569 · doi:10.1017/S0022112087000569
[57] Gyr, Drag Reduction of Turbulent Flows by Additives (1995) · Zbl 0973.76616 · doi:10.1007/978-94-017-1295-8
[58] DOI: 10.1017/S0022112084002299 · Zbl 0548.76052 · doi:10.1017/S0022112084002299
[59] DOI: 10.1023/A:1017985826227 · Zbl 1094.76506 · doi:10.1023/A:1017985826227
[60] DOI: 10.1017/CBO9780511569463 · doi:10.1017/CBO9780511569463
[61] DOI: 10.1017/S0022112003005305 · Zbl 1063.76580 · doi:10.1017/S0022112003005305
[62] Nieuwstadt, Turbulence Structure and Motion pp 269– (2001) · doi:10.1007/978-3-7091-2574-8_10
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.