×

On the stability of plane Couette-Poiseuille flow with uniform crossflow. (English) Zbl 1197.76046

Summary: We present a detailed study of the linear stability of the plane Couette-Poiseuille flow in the presence of a crossflow. The base flow is characterized by the crossflow Reynolds number \(R_{inj}\) and the dimensionless wall velocity \(k\). Squire’s transformation may be applied to the linear stability equations and we therefore consider two-dimensional (spanwise-independent) perturbations. Corresponding to each dimensionless wall velocity, \(k \in [0, 1]\), two ranges of \(R_{inj}\) exist where unconditional stability is observed. In the lower range of \(R_{inj}\), for modest \(k\) we have a stabilization of long wavelengths leading to a cutoff \(R_{inj}\). This lower cutoff results from skewing of the velocity profile away from a Poiseuille profile, shifting of the critical layers and the gradual decrease of energy production. Crossflow stabilization and Couette stabilization appear to act via very similar mechanisms in this range, leading to the potential for a robust compensatory design of flow stabilization using either mechanism. As \(R_{inj}\) is increased, we see first destabilization and then stabilization at very large \(R_{inj}\). The instability is again a long-wavelength mechanism. An analysis of the eigenspectrum suggests the cause of instability is due to resonant interactions of Tollmien-Schlichting waves. A linear energy analysis reveals that in this range the Reynolds stress becomes amplified, the critical layer is irrelevant and viscous dissipation is completely dominated by the energy production/negation, which approximately balances at criticality. The stabilization at very large \(R_{inj}\) appears to be due to decay in energy production, which diminishes like \(R_{inj}^{-1}\). Our study is limited to two-dimensional, spanwise-independent perturbations.

MSC:

76E05 Parallel shear flows in hydrodynamic stability

References:

[1] DOI: 10.1063/1.1762411 · doi:10.1063/1.1762411
[2] DOI: 10.1063/1.1693655 · Zbl 0218.76052 · doi:10.1063/1.1693655
[3] DOI: 10.1063/1.1894796 · Zbl 1187.76185 · doi:10.1063/1.1894796
[4] DOI: 10.1063/1.1533076 · Zbl 1185.76129 · doi:10.1063/1.1533076
[5] DOI: 10.1063/1.869185 · doi:10.1063/1.869185
[6] DOI: 10.1103/PhysRevLett.91.224502 · doi:10.1103/PhysRevLett.91.224502
[7] DOI: 10.1016/S0376-7388(01)00396-9 · doi:10.1016/S0376-7388(01)00396-9
[8] DOI: 10.1146/annurev.fluid.39.050905.110308 · doi:10.1146/annurev.fluid.39.050905.110308
[9] DOI: 10.1098/rspa.1933.0193 · JFM 59.1458.02 · doi:10.1098/rspa.1933.0193
[10] DOI: 10.1017/S0022112085002002 · Zbl 0586.76058 · doi:10.1017/S0022112085002002
[11] DOI: 10.1063/1.1693900 · Zbl 0232.76049 · doi:10.1063/1.1693900
[12] DOI: 10.1017/S0022112001006255 · Zbl 1037.76023 · doi:10.1017/S0022112001006255
[13] Schmid, Stability and Transition in Shear Flows (2001) · Zbl 0966.76003 · doi:10.1007/978-1-4613-0185-1
[14] DOI: 10.1016/S0309-1708(02)00042-8 · doi:10.1016/S0309-1708(02)00042-8
[15] DOI: 10.1146/annurev.fluid.38.050304.092139 · doi:10.1146/annurev.fluid.38.050304.092139
[16] DOI: 10.1017/S0022112096001930 · Zbl 0871.76021 · doi:10.1017/S0022112096001930
[17] DOI: 10.1063/1.857892 · Zbl 0746.76039 · doi:10.1063/1.857892
[18] DOI: 10.1007/BF01078886 · Zbl 0287.76037 · doi:10.1007/BF01078886
[19] DOI: 10.1017/S0022112067000485 · Zbl 0166.46102 · doi:10.1017/S0022112067000485
[20] DOI: 10.1137/0153002 · Zbl 0778.34060 · doi:10.1137/0153002
[21] DOI: 10.1017/S0022112066000855 · doi:10.1017/S0022112066000855
[22] Pfenniger, Boundary Layer and Flow Control pp 970– (1961)
[23] DOI: 10.1103/PhysRevLett.96.094501 · doi:10.1103/PhysRevLett.96.094501
[24] DOI: 10.1017/S0022112071002842 · Zbl 0237.76027 · doi:10.1017/S0022112071002842
[25] DOI: 10.1103/PhysRevE.56.3000 · doi:10.1103/PhysRevE.56.3000
[26] DOI: 10.1063/1.1691784 · Zbl 0187.51503 · doi:10.1063/1.1691784
[27] DOI: 10.1016/S0021-9290(02)00186-0 · doi:10.1016/S0021-9290(02)00186-0
[28] DOI: 10.1017/S002211207600147X · Zbl 0339.76030 · doi:10.1017/S002211207600147X
[29] DOI: 10.1017/S0022112007006301 · Zbl 1123.76022 · doi:10.1017/S0022112007006301
[30] DOI: 10.1146/annurev.fluid.30.1.1 · doi:10.1146/annurev.fluid.30.1.1
[31] DOI: 10.1017/S0022112069001959 · Zbl 0175.52402 · doi:10.1017/S0022112069001959
[32] DOI: 10.1017/S0022112068001552 · Zbl 0164.28703 · doi:10.1017/S0022112068001552
[33] DOI: 10.1126/science.1100393 · doi:10.1126/science.1100393
[34] DOI: 10.1103/PhysRevLett.95.214502 · doi:10.1103/PhysRevLett.95.214502
[35] DOI: 10.1017/S0022112095000978 · Zbl 0867.76032 · doi:10.1017/S0022112095000978
[36] DOI: 10.1017/S0022112004009346 · Zbl 1065.76072 · doi:10.1017/S0022112004009346
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.