×

Bar constructions and Quillen homology of modules over operads. (English) Zbl 1197.18002

In the context of symmetric spectra and unbounded chain complexes over a commutative ring, the author proves that a total left derived functor arising from an operad map can be expressed in terms of a realization of a simplicial bar construction, assuming a cofibrancy condition. A special case of this is the main theorem of the paper: the topological Quillen homology of an algebra (resp. module) over an operad in symmetric spectra or unbounded chain complexes can be expressed in terms of the realization of a simplicial bar construction, provided the simplicial bar construction is objectwise cofibrant.
More precisely, for the general statement, consider a morphism \(f:{\mathcal O} \rightarrow {\mathcal O}'\) of operads in symmetric spectra or unbounded chain complexes over a commutative ring. The category of \({\mathcal O}\)-algebras (respectively left \({\mathcal O}\)-modules) can be equipped with an appropriate model structure. If \(X\) is an \({\mathcal O}\)-algebra (respectively \({\mathcal O}\)-module) and the simplicial bar construction \(B({\mathcal O},{\mathcal O},X)\) is objectwise cofibrant in \({\mathcal A}lg_{\mathcal O}\), then there is a zigzag of weak equivalences \(Lf_*(X) \simeq |B({\mathcal O},\mathcal{O'},X)|\). For example, if \({\mathcal O}\) is a cofibrant operad and \(X\) is a cofibrant \({\mathcal O}\)-algebra, then \(B({\mathcal O},{\mathcal O},X)\) is object wise cofibrant.
For the main theorem on topological Quillen homology, consider an augmented operad \({\mathcal O}\) in symmetric spectra or unbounded chain complexes over a commutative ring. If \(X\) is an \({\mathcal O}\)-algebra and the simplicial bar construction \(B({\mathcal O},{\mathcal O},X)\) is objectwise cofibrant, then there is a zigzag of weak equivalences \(I \circ^{\text{L}}_{\mathcal O} X \simeq |B(I,{\mathcal O},X)|\). A similar statement holds for left \({\mathcal O}\)-modules.
An auxiliary result is that the forgetful functor from \({\mathcal O}\)-algebras to symmetric spectra or unbounded chain complexes preserves, up to weak equivalence, homotopy colimits indexed by \(\Delta^{\text{op}}\).
The author compares his main theorem with a similar result by M. Basterra on the total left derived “indecomposables” functor in the context of \(S\)-modules [“André-Quillen cohomology of commutative \(S\)-algebras”, J. Pure Appl. Algebra 144, No. 2, 111–143 (1999; Zbl 0937.55006)] and a result by B. Fresse on the total left derived “indecomposables” functor in the context of non-negative chain complexes [“Koszul duality of operads and homology of partition posets”, Contemp. Math. 346, 115–215 (2004; Zbl 1077.18007)].

MSC:

18D50 Operads (MSC2010)
55P43 Spectra with additional structure (\(E_\infty\), \(A_\infty\), ring spectra, etc.)
55P48 Loop space machines and operads in algebraic topology
18G55 Nonabelian homotopical algebra (MSC2010)
55U35 Abstract and axiomatic homotopy theory in algebraic topology

References:

[1] M Basterra, André-Quillen cohomology of commutative \(S\)-algebras, J. Pure Appl. Algebra 144 (1999) 111 · Zbl 0937.55006 · doi:10.1016/S0022-4049(98)00051-6
[2] M Basterra, M A Mandell, Homology and cohomology of \(E_{\infty}\) ring spectra, Math. Z. 249 (2005) 903 · Zbl 1071.55006 · doi:10.1007/s00209-004-0744-y
[3] C Berger, I Moerdijk, Axiomatic homotopy theory for operads, Comment. Math. Helv. 78 (2003) 805 · Zbl 1041.18011 · doi:10.1007/s00014-003-0772-y
[4] W Chachólski, J Scherer, Homotopy theory of diagrams, Mem. Amer. Math. Soc. 155 (2002) · Zbl 1006.18015
[5] D Dugger, D C Isaksen, Topological hypercovers and \(\mathbbA^1\)-realizations, Math. Z. 246 (2004) 667 · Zbl 1055.55016 · doi:10.1007/s00209-003-0607-y
[6] W G Dwyer, H W Henn, Homotopy theoretic methods in group cohomology, Advanced Courses in Mathematics. CRM Barcelona, Birkhäuser Verlag (2001) · Zbl 1047.55001
[7] W G Dwyer, J Spaliński, Homotopy theories and model categories, North-Holland (1995) 73 · Zbl 0869.55018
[8] A D Elmendorf, I Kriz, M A Mandell, J P May, Rings, modules, and algebras in stable homotopy theory, Mathematical Surveys and Monographs 47, American Mathematical Society (1997) · Zbl 0894.55001
[9] A D Elmendorf, M A Mandell, Rings, modules, and algebras in infinite loop space theory, Adv. Math. 205 (2006) 163 · Zbl 1117.19001 · doi:10.1016/j.aim.2005.07.007
[10] B Fresse, Lie theory of formal groups over an operad, J. Algebra 202 (1998) 455 · Zbl 1041.18009 · doi:10.1006/jabr.1997.7280
[11] B Fresse, Koszul duality of operads and homology of partition posets, Contemp. Math. 346, Amer. Math. Soc. (2004) 115 · Zbl 1077.18007
[12] B Fresse, Modules over operads and functors, Lecture Notes in Mathematics 1967, Springer (2009) · Zbl 1178.18007 · doi:10.1007/978-3-540-89056-0
[13] P Gabriel, M Zisman, Calculus of fractions and homotopy theory, Ergebnisse der Mathematik und ihrer Grenzgebiete 35, Springer New York, New York (1967) · Zbl 0186.56802
[14] P G Goerss, On the André-Quillen cohomology of commutative \(\mathbbF_2\)-algebras, Astérisque (1990) 169 · Zbl 0742.13008
[15] P G Goerss, M J Hopkins, André-Quillen (co)-homology for simplicial algebras over simplicial operads, Contemp. Math. 265, Amer. Math. Soc. (2000) 41 · Zbl 0999.18009
[16] P G Goerss, M J Hopkins, Moduli spaces of commutative ring spectra, London Math. Soc. Lecture Note Ser. 315, Cambridge Univ. Press (2004) 151 · Zbl 1086.55006
[17] P G Goerss, J F Jardine, Simplicial homotopy theory, Progress in Mathematics 174, Birkhäuser Verlag (1999) · Zbl 0949.55001
[18] P Goerss, K Schemmerhorn, Model categories and simplicial methods, Contemp. Math. 436, Amer. Math. Soc. (2007) 3 · Zbl 1134.18007
[19] V K A M Gugenheim, J P May, On the theory and applications of differential torsion products, Memoirs of the American Mathematical Society 142, American Mathematical Society (1974) · Zbl 0292.55019
[20] J E Harper, Homotopy theory of modules over operads in symmetric spectra, Algebr. Geom. Topol. 9 (2009) 1637 · Zbl 1235.55004 · doi:10.2140/agt.2009.9.1637
[21] J E Harper, Homotopy theory of modules over operads and non-\(\Sigma\) operads in monoidal model categories, J. Pure Appl. Algebra (to appear) · Zbl 1231.55011 · doi:10.1016/j.jpaa.2009.11.006
[22] V Hinich, Homological algebra of homotopy algebras, Comm. Algebra 25 (1997) 3291 · Zbl 0894.18008 · doi:10.1080/00927879708826055
[23] P S Hirschhorn, Model categories and their localizations, Mathematical Surveys and Monographs 99, American Mathematical Society (2003) · Zbl 1017.55001
[24] M Hovey, Model categories, Mathematical Surveys and Monographs 63, American Mathematical Society (1999) · Zbl 0909.55001
[25] M Hovey, B Shipley, J Smith, Symmetric spectra, J. Amer. Math. Soc. 13 (2000) 149 · Zbl 0931.55006 · doi:10.1090/S0894-0347-99-00320-3
[26] M Kapranov, Y Manin, Modules and Morita theorem for operads, Amer. J. Math. 123 (2001) 811 · Zbl 1001.18004 · doi:10.1353/ajm.2001.0033
[27] I K\vz, J P May, Operads, algebras, modules and motives, Astérisque 233 (1995) · Zbl 0840.18001
[28] S Mac Lane, Homology, Classics in Mathematics, Springer (1995) · Zbl 0818.18001
[29] S Mac Lane, Categories for the working mathematician, Graduate Texts in Mathematics 5, Springer (1998) · Zbl 0906.18001
[30] M A Mandell, \(E_\infty\) algebras and \(p\)-adic homotopy theory, Topology 40 (2001) 43 · Zbl 0974.55004 · doi:10.1016/S0040-9383(99)00053-1
[31] M A Mandell, J P May, S Schwede, B Shipley, Model categories of diagram spectra, Proc. London Math. Soc. \((3)\) 82 (2001) 441 · Zbl 1017.55004 · doi:10.1112/S0024611501012692
[32] J P May, The geometry of iterated loop spaces, Lectures Notes in Mathematics 271, Springer (1972) · Zbl 0244.55009
[33] J P May, Classifying spaces and fibrations, Mem. Amer. Math. Soc. 1 (1975) · Zbl 0321.55033
[34] J P May, Simplicial objects in algebraic topology, Chicago Lectures in Mathematics, University of Chicago Press (1992) · Zbl 0769.55001
[35] J E McClure, J H Smith, A solution of Deligne’s Hochschild cohomology conjecture, Contemp. Math. 293, Amer. Math. Soc. (2002) 153 · Zbl 1009.18009
[36] H Miller, Correction to: “The Sullivan conjecture on maps from classifying spaces” [Ann. of Math. (2) 120 (1984) 39-87], Ann. of Math. \((2)\) 121 (1985) 605 · Zbl 0575.55011 · doi:10.2307/1971212
[37] D G Quillen, Homotopical algebra, Lecture Notes in Mathematics 43, Springer (1967) · Zbl 0168.20903 · doi:10.1007/BFb0097438
[38] D Quillen, Rational homotopy theory, Ann. of Math. \((2)\) 90 (1969) 205 · Zbl 0191.53702 · doi:10.2307/1970725
[39] D Quillen, On the (co-) homology of commutative rings, Amer. Math. Soc. (1970) 65 · Zbl 0234.18010
[40] C Rezk, Spaces of Algebra Structures and Cohomology of Operads, PhD thesis, MIT (1996)
[41] C Rezk, Notes on the Hopkins-Miller theorem, Contemp. Math. 220, Amer. Math. Soc. (1998) 313 · Zbl 0910.55004
[42] S Schwede, Spectra in model categories and applications to the algebraic cotangent complex, J. Pure Appl. Algebra 120 (1997) 77 · Zbl 0888.55010 · doi:10.1016/S0022-4049(96)00058-8
[43] S Schwede, \(S\)-modules and symmetric spectra, Math. Ann. 319 (2001) 517 · Zbl 0972.55005 · doi:10.1007/PL00004446
[44] S Schwede, Stable homotopy of algebraic theories, Topology 40 (2001) 1 · Zbl 0964.55017 · doi:10.1016/S0040-9383(99)00046-4
[45] S Schwede, An untitled book project about symmetric spectra (2007)
[46] S Schwede, B E Shipley, Algebras and modules in monoidal model categories, Proc. London Math. Soc. \((3)\) 80 (2000) 491 · Zbl 1026.18004 · doi:10.1112/S002461150001220X
[47] B Shipley, A convenient model category for commutative ring spectra, Contemp. Math. 346, Amer. Math. Soc. (2004) 473 · Zbl 1063.55006
[48] M Spitzweck, Operads, algebras and modules in general model categories (2001) · Zbl 1103.18300
[49] C A Weibel, An introduction to homological algebra, Cambridge Studies in Advanced Mathematics 38, Cambridge University Press (1994) · Zbl 0797.18001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.