×

A discontinuous Galerkin method for the full two-fluid plasma model. (English) Zbl 1196.76039

Summary: A discontinuous Galerkin method for the full two-fluid plasma model is described. The plasma model includes complete electron and ion fluids, which allows charge separation, separate electron and ion temperatures and velocities. Complete Maxwell’s equations are used including displacement current. The algorithm is validated by benchmarking against existing plasma algorithms on the GEM Challenge magnetic reconnection problem. The algorithm can be easily extended to three dimensions, higher order accuracy, general geometries and parallel platforms.

MSC:

76M10 Finite element methods applied to problems in fluid mechanics
76X05 Ionized gas flow in electromagnetic fields; plasmic flow
76T99 Multiphase and multicomponent flows
Full Text: DOI

References:

[1] Bellan, P. M., Spheromaks (2000), Imperial College Press
[2] Guo, H. Y.; Hoffman, A. L.; Brooks, R. D.; Peter, A. M.; Pietrzyk, Z. A.; Votroubek, G. R., Formation and steady-state maintenance of field reversed configuration using rotating magnetic field current drive, Phys. Plasmas, 9, 185-200 (2002)
[3] Shumlak, U.; Golingo, R. P.; Nelson, B. A.; Hartog, D. J.D., Evidence of stabilization in the z-pinch, Phys. Rev. Lett., 87 (2000)
[4] Lindl, J. D.; Amendt, P.; Berger, R. L.; Glendinning, S. G.; Glenzer, S. H.; Haan, S. W.; Kauffman, R. L.; Landen, O. L.; Suter, L. J., The physics basis for ignition using indirect-drive targets on the national ignition facility, Phys. Plasmas, 11, 2, 339-491 (2004)
[5] Breslau, J. A.; Jardin, S. C., A parallel algorithm for global magnetic reconnection studies, Comput. Phys. Comm., 151, 8-24 (2003) · Zbl 1196.76004
[6] Chacon, L.; Knoll, D. A., A 2D high-\(β\) Hall MHD implicit nonlinear solver, J. Comp. Phys., 188, 573-592 (2003) · Zbl 1127.76375
[7] Harned, D. S.; Mikic, Z., Accurate semi-implicit treatment of the hall effect in magnetohydrodynamic computations, J. Comp. Phys., 83, 1-15 (1989) · Zbl 0672.76051
[8] A. Bhattacharjee, Center for magnetic reconnection studies: Present status, future plans, PSACI PAC Presentation, Princeton, June 2003; A. Bhattacharjee, Center for magnetic reconnection studies: Present status, future plans, PSACI PAC Presentation, Princeton, June 2003
[9] Huba, J. D., Hall magnetohydrodynamics—a tutorial, (Buchner, M. S.J.; Dunn, C. T., Space Plasma Simulation (2003), Springer), 166-192
[10] Shay, M. A.; Drake, J. F.; Rogers, B. N.; Denton, R. E., Alfvenic collisionless magnetic reconnection and the Hall term, J. Geophys. Res., 106, 3759-3772 (2001)
[11] Shumlak, U.; Loverich, J., Approximate Riemann solver for the two-fluid plasma model, J. Comp. Phys., 187, 620-638 (2003) · Zbl 1061.76526
[12] Califano, F.; Pegoraro, F.; Bulanov, S. V., Spatial structure and time evolution of the Weibel instability in collisionless inhomogeneous plasmas, Phys. Rev. E, 56, 1, 963-969 (1997)
[13] Cockburn, B.; Shu, C.-W., TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. II: General framework, Math. Comput., 52, 411-435 (1989) · Zbl 0662.65083
[14] Cockburn, B.; Lin, S.-Y.; Shu, C.-W., TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. III: One-dimensional systems, J. Comp. Phys., 84, 90-113 (1989) · Zbl 0677.65093
[15] Cockburn, B.; Hou, S.; Shu, C.-W., The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. IV: Multidimensional case, Math. Comp., 54, 545-581 (1990) · Zbl 0695.65066
[16] Cockburn, B.; Shu, C.-W., The Runge-Kutta discontinuous Galerkin method for conservation laws. V: Multidimensional systems, J. Comp. Phys., 141, 199-224 (1998) · Zbl 0920.65059
[17] Birn, J., Geospace environmental modeling (GEM) magnetic reconnection challenge, J. Geophys. Res., 106, A3, 3715-3719 (2001)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.