×

A spectral method for elliptic equations: The Dirichlet problem. (English) Zbl 1196.65177

Let \(\Omega \) be an open, simply connected, and bounded region in \(\mathbb R^{d }, d \geq 2\), and assume its boundary \(\partial\Omega\) is smooth. Consider solving an elliptic partial differential equation \(Lu = f\) over \(\Omega \) with zero Dirichlet boundary values. The problem is converted to an equivalent elliptic problem over the unit ball \(B\); and then a spectral Galerkin method is used to create a convergent sequence of multivariate polynomials \(u _{n }\) of degree \(\leq n\) that is convergent to \(u\). The transformation from \(\Omega \) to \(B\) requires a special analytical calculation for its implementation. With sufficiently smooth problem parameters, the method is shown to be rapidly convergent. For \(u\in C^{\infty}( \overline{\Omega})\) and assuming \(\partial\Omega\) is a \(C ^{ \infty }\) boundary, the convergence of \(\|u-u_{n}\|_{H^{1}}\) to zero is faster than any power of \(1/n\). Numerical examples in \(\mathbb R^{2}\) and \(\mathbb R^{3}\) experimentally show an exponential rate of convergence.

MSC:

65N35 Spectral, collocation and related methods for boundary value problems involving PDEs
35J25 Boundary value problems for second-order elliptic equations
65N12 Stability and convergence of numerical methods for boundary value problems involving PDEs

References:

[1] Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions. Dover, New York (1965) · Zbl 0171.38503
[2] Atkinson, K.: An Introduction to Numerical Analysis, 2nd edn. Wiley, New York (1989) · Zbl 0718.65001
[3] Atkinson, K., Han, W.: Theoretical Numerical Analysis: A Functional Analysis Framework, 2nd edn. Springer, New York (2005) · Zbl 1068.47091
[4] Atkinson, K., Hansen O., Solving the nonlinear Poisson equation on the unit disk. J. Integral Equations Appl. 17, 223–241 (2005) · Zbl 1096.65119 · doi:10.1216/jiea/1181075333
[5] Boyd, J.: Chebyshev and Fourier Spectral Methods, 2nd edn. Dover, New York (2000)
[6] Brenner, S., Scott, L.R.: The Mathematical Theory of Finite Element Methods, 2nd edn. Springer, New York (2002) · Zbl 1012.65115
[7] Canuto, C., Quarteroni, A., Hussaini, My., Zang, T.: Spectral Methods in Fluid Mechanics. Springer, New York (1988) · Zbl 0658.76001
[8] Canuto, C., Quarteroni, A., Hussaini, My., Zang, T.: Spectral Methods–Fundamentals in Single Domains. Springer, New York (2006) · Zbl 1093.76002
[9] Doha, E., Abd-Elhameed, W.: Efficient spectral-Galerkin algorithms for direct solution of second-order equations using ultraspherical polynomials. SIAM J. Sci. Comput. 24, 548–571 (2002) · Zbl 1020.65088 · doi:10.1137/S1064827500378933
[10] Dunkl, C., Xu, Y.: Orthogonal Polynomials of Several Variables. Cambridge University Press, Cambridge (2001) · Zbl 0964.33001
[11] Gautschi, W.: Orthogonal Polynomials. Oxford University Press, Oxford (2004) · Zbl 1130.42300
[12] Hansen, O., Atkinson, K., Chien, D.: On the norm of the hyperinterpolation operator on the unit disk and its use for the solution of the nonlinear Poisson equation. IMA J. Numer. Anal. 29, 257–283 (2009) · Zbl 1163.65082 · doi:10.1093/imanum/drm052
[13] Hobson, E.W.: The Theory of Spherical and Ellipsoidal Harmonics. Chelsea, New York (1965) · Zbl 0004.21001
[14] Liseikin, V.: Grid Generation Methods. Springer, Berlin (1999) · Zbl 0949.65098
[15] Logan, B., Shepp, L.: Optimal reconstruction of a function from its projections. Duke Math. J. 42, 645–659 (1975) · Zbl 0343.41020 · doi:10.1215/S0012-7094-75-04256-8
[16] MacRobert, T.M.: Spherical Harmonics. Dover, New York (1948) · Zbl 0030.30601
[17] Mikhlin, S.: Mathematical Physics, an Advanced Course. North-Holland, Amsterdam (1970) · Zbl 0202.36901
[18] Ragozin, D.: Constructive polynomial approximation on spheres and projective spaces. Trans. Amer. Math. Soc. 162, 157–170 (1971) · Zbl 0234.41011
[19] Shen, J., Wang, L.: Analysis of a spectral-Galerkin approximation to the Helmholtz equation in exterior domains. SIAM J. Numer. Anal. 45, 1954–1978 (2007) · Zbl 1154.65082 · doi:10.1137/060665737
[20] Stroud, A.: Approximate Calculation of Multiple Integrals. Prentice-Hall, Englewood Cliffs (1971) · Zbl 0379.65013
[21] Xu, Y.: Lecture notes on orthogonal polynomials of several variables. In: Advances in the Theory of Special Functions and Orthogonal Polynomials, pp.135–188. Nova Science, Huntington (2004)
[22] Xu, Y.: Analysis on the unit ball and on the simplex. Electron. Trans. Numer. Anal. 25, 284–301 (2006) · Zbl 1107.41008
[23] Zhang, S., Jin, J.: Computation of Special Functions. Wiley, New York (1996) · Zbl 0865.33001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.