×

Nonparametric estimation of time-changed Lévy models under high-frequency data. (English) Zbl 1196.62111

Summary: Let \(\{Z_t\}_{t\geq 0}\) be a Lévy process with Lévy measure \(\nu \), and let \(\tau (t)=\int _{0}^{t}r(u)\,u\), where \(\{r(t)\}_{t\geq 0}\) is a positive ergodic diffusion independent from \(Z\). Based upon discrete observations of the time-changed Lévy process \(X_t:=Z_{\tau _{t}}\) during a time interval \([0,T]\), we study the asymptotic properties of certain estimators of the parameters \(\beta (\varphi ):= \int \varphi (x)\nu (d x)\), which in turn are well known to be the building blocks of several nonparametric methods such as sieve-based estimation and kernel estimation. Under uniform boundedness of the second moments of \(r\) and conditions on \(\varphi\) necessary for the standard short-term ergodic property lim\(_{t\rightarrow 0}\) E \(\varphi (Z_{t})/t=\beta (\varphi )\) to hold, consistency and asymptotic normality of the proposed estimators are ensured when the time horizon \(T\) increases in such a way that the sampling frequency is high enough relative to \(T\).

MSC:

62M05 Markov processes: estimation; hidden Markov models
62G20 Asymptotic properties of nonparametric inference
62G05 Nonparametric estimation
62G07 Density estimation
60G51 Processes with independent increments; Lévy processes
60F05 Central limit and other weak theorems
Full Text: DOI

References:

[1] Barndorff-Nielsen, O. E. (1998). Processes of normal inverse Gaussian type. Finance Stoch. 2, 41–68. · Zbl 0894.90011 · doi:10.1007/s007800050032
[2] Barndorff-Nielsen, O. E. and Shephard, N. (2001). Modelling by Lévy processess for financial economics. In Lévy Processes , Birkhäuser, Boston, MA, pp. 283–318. · Zbl 0991.62089
[3] Billingsley, P. (1999). Convergence of Probability Measures . John Wiley, New York. · Zbl 0944.60003
[4] Carr, P. and Wu, L. (2004). Time-changed Levy processes and option pricing. J. Financial Economics 71, 113–141.
[5] Carr, P., Geman, H., Madan, D. and Yor, M. (2002). The fine structure of asset returns: an empirical investigation. J. Business 75, 305–332.
[6] Carr, P., Geman, H., Madan, D. and Yor, M. (2003). Stochastic volatility for Lévy processes. Math. Finance 13, 345–382. · Zbl 1092.91022 · doi:10.1111/1467-9965.00020
[7] Chung, K. L. (2001). A Course in Probability Theory , 3rd edn. Academic Press, San Diego, CA.
[8] Eberlein, E. (2001). Application of generalized hyperbolic Lévy motions to finance. In Lévy Processes , Birkhäuser, Boston, MA, pp. 319–336. · Zbl 0982.60045
[9] Eberlein, E. and Keller, U. (1995). Hyperbolic distribution in finance. Bernoulli 1, 281–299. · Zbl 0836.62107 · doi:10.2307/3318481
[10] Figueroa-López, J. E. (2004). Nonparametric estimation of Lévy processes with a view towards mathematical finance. Doctoral Thesis, Georgia Institute of Technology.
[11] Figueroa-López, J. E. (2008). Sieve-based confidence intervals and bands for Lévy densities. Preprint. Available at www.stat.purdue.edu/\(\sim\)figueroa. · Zbl 1345.62061
[12] Figueroa-López, J. E. (2008). Small-time moment asymptotics for Lévy processes. Statist. Prob. Lett. 78, 3355–3365. · Zbl 1489.60074
[13] Figueroa-López, J. E. (2009). Nonparametric estimation for Lévy models based on discrete-sampling. In Optimality: The Third Erich L. Lehmann Symposium (IMS Lecture Notes Monogr. Ser. 57 ), Institute of Mathematical Statistics, Beachwood, Ohio, pp. 117–146. · Zbl 1271.62067
[14] Figueroa-López, J. E. (2009). Nonparametric estimation of time-changed Lévy models under high-frequency data. Tech. Rep. Department of Statistics, Purdue University. Available at www.stat.purdue.edu/\(\sim\)figueroa. · Zbl 1196.62111
[15] Figueroa-López, J. E. and Houdré, C. (2006). Risk bounds for the non-parametric estimation of Lévy processes. In High Dimensional Probability (IMS Lecture Notes Monogr. Ser. 51 ), Beachwood, Ohio, pp. 96–116. · Zbl 1117.62085 · doi:10.1214/074921706000000789
[16] Jacod, J. (2007). Asymptotic properties of power variations of Lévy processes. ESAIM Prob. Statist. 11, 173–196. · Zbl 1185.60031 · doi:10.1051/ps:2007013
[17] Kallenberg, O. (1997). Foundations of Modern Probability . Springer, New York. · Zbl 0892.60001
[18] Karatzas, I. and Shreve, S. E. (1988). Brownian Motion and Stochastic Calculus . Springer, New York. · Zbl 0638.60065
[19] Madan, D. B., Carr, P. and Chang, E. C. (1998). The variance gamma process and option pricing. Europ. Finance Rev. 2, 79–105. · Zbl 0937.91052 · doi:10.1023/A:1009703431535
[20] Mancini, C. (2009). Non-parametric threshold estimation for models with stochastic diffusion coefficient and jumps. Scand. J. Statist. 36, 270–296. · Zbl 1198.62079 · doi:10.1111/j.1467-9469.2008.00622.x
[21] Sato, K. I. (1999). Lévy Processes and Infinitely Divisible Distributions . Cambridge University Press. · Zbl 0973.60001
[22] Van der Vaart, A. and van Zanten, H. (2005). Donsker theorems for diffusions: necessary and sufficient conditions. Ann. Prob. 33, 1422–1451. · Zbl 1084.60047 · doi:10.1214/009117905000000152
[23] Van Zanten, J. H. (2003). On uniform laws of large numbers for ergodic diffusions and consistency of estimators. Statist. Infer. Stoch. Process. 6, 199–213. · Zbl 1036.60025 · doi:10.1023/A:1023904715206
[24] Woerner, J. H. C. (2003). Variational sums and power variation: a unifying approach to model selection and estimation in semimartingale models. Statist. Decisions 21, 47–68. · Zbl 1046.62084 · doi:10.1524/stnd.21.1.47.20316
[25] Woerner, J. H. C. (2007). Inference in Lévy-type stochastic volatility models. Adv. Appl. Prob. 39, 531–549. · Zbl 1127.62104 · doi:10.1239/aap/1183667622
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.