×

The growth of the infinite long-range percolation cluster. (English) Zbl 1196.60171

Summary: We consider long-range percolation on \(\mathbb Z^d\), where the probability that two vertices at distance \(r\) are connected by an edge is given by \(p(r) = 1 - \exp[ - \lambda (r)] \in (0, 1)\) and the presence or absence of different edges are independent. Here, \(\lambda (r)\) is a strictly positive, nonincreasing, regularly varying function. We investigate the asymptotic growth of the size of the \(k\)-ball around the origin, \(|\mathcal B_k|\), that is, the number of vertices that are within graph-distance \(k\) of the origin, for \(k \rightarrow \infty \), for different \(\lambda (r)\). We show that conditioned on the origin being in the (unique) infinite cluster, nonempty classes of nonincreasing regularly varying \(\lambda (r)\) exist, for which, respectively:
\(\bullet |\mathcal B_k|^{1/k} \to \infty\) almost surely;
\(\bullet \) there exist \(1 < a_{1} < a_{2} < \infty \) such that \(\lim_{k \to \infty} \mathbb P(a_1 < |\mathcal B_k|^{1/k} < a_2) = 1;\)
\(\bullet |\mathcal B_k|^{1/k}\) almost surely.
This result can be applied to spatial SIR epidemics. In particular, regimes are identified for which the basic reproduction number, \(R_{0}\), which is an important quantity for epidemics in unstructured populations, has a useful counterpart in spatial epidemics.

MSC:

60K35 Interacting random processes; statistical mechanics type models; percolation theory
92D30 Epidemiology
82B28 Renormalization group methods in equilibrium statistical mechanics

References:

[1] Antal, P. and Pisztora, A. (1996). On the chemical distance for supercritical Bernoulli percolation models. Ann. Probab. 24 1036-1048. · Zbl 0871.60089 · doi:10.1214/aop/1039639377
[2] Ball, F. G. and Donnelly, P. (1995). Strong approximations for epidemic models. Stochastic Process. Appl. 55 1-21. · Zbl 0823.92024 · doi:10.1016/0304-4149(94)00034-Q
[3] Benjamini, I. and Berger, N. (2001). The diameter of long-range percolation clusters on finite cycles. Random Structures Algorithms 19 102-111. · Zbl 0983.60099 · doi:10.1002/rsa.1022
[4] Benjamini, I., Kesten, H., Peres, Y. and Schramm, O. (2004). Geometry of the uniform spanning forest: Transitions in dimensions 4, 8, 12, \cdots ,. Ann. of Math. 160 465-491. · Zbl 1071.60006 · doi:10.4007/annals.2004.160.465
[5] Berger, N. (2002). Transience, recurrence and critical behaviour for long-range percolation. Comm. Math. Phys. 226 531-558. · Zbl 0991.82017 · doi:10.1007/s002200200617
[6] Berger, N. (2004). A lower bound for the chemical distance in sparse long-range percolation models. Available at http://arxiv.org/abs/math/0409021.
[7] Bingham, N. H., Goldie, C. M. and Teugels, J. L. (1989). Regular Variation . Cambridge Univ. Press, Cambridge. · Zbl 0667.26003
[8] Biskup, M. (2004). On the scaling of the chemical distance in long-range percolation models. Ann. Probab. 32 2938-2977. · Zbl 1072.60084 · doi:10.1214/009117904000000577
[9] Biskup, M. (2009). Graph diameter in long-range percolation. Available at http://arxiv.org/abs/math/0406379. · Zbl 1228.05134
[10] Coppersmith, D., Gamarnik, D. and Sviridenko, M. (2002). The diameter of a long-range percolation graph. Random Structures Algorithms 21 1-13. · Zbl 1011.60086 · doi:10.1002/rsa.10042
[11] Cox, J. T. and Durrett, R. (1988). Limit theorems for the spread of epidemics and forest fires. Stochastic Process. Appl. 30 171-191. · Zbl 0667.92016 · doi:10.1016/0304-4149(88)90083-X
[12] Davis, S., Trapman, P., Leirs, H., Begon, M. and Heesterbeek, J. A. P. (2008). The abundance threshold for plague as a critical percolation phenomenon. Nature 454 634-637.
[13] Diekmann, O. and Heesterbeek, J. A. P. (2000). Mathematical Epidemiology of Infectious Diseases : Model Building , Analysis and Interpretation . Wiley, Chichester. · Zbl 0997.92505
[14] Fortuin, C. M., Kasteleyn, P. W. and Ginibre, J. (1971). Correlation inequalities on some partially ordered sets. Comm. Math. Phys. 22 89-103. · Zbl 0346.06011 · doi:10.1007/BF01651330
[15] Gandolfi, A., Keane, M. S. and Newman, C. M. (1992). Uniqueness of the infinite component in a random graph with applications to percolation and spin glasses. Probab. Theory Related Fields 92 511-527. · Zbl 0767.60098 · doi:10.1007/BF01274266
[16] Grimmett, G. R. (1999). Percolation , 2nd ed. Springer, Berlin. · Zbl 0926.60004
[17] Grimmett, G. R. and Stirzaker, D. R. (1992). Probability and Random Processes , 2nd ed. Oxford Univ. Press, New York. · Zbl 0759.60002
[18] Jagers, P. (1975). Branching Processes with Biological Applications . Wiley, London. · Zbl 0356.60039
[19] Kesten, H. (1980). The critical probability of bond percolation on the square lattice equals 1/2. Comm. Math. Phys. 74 41-59. · Zbl 0441.60010 · doi:10.1007/BF01197577
[20] Meester, R. and Roy, R. (1996). Continuum Percolation . Cambridge Univ. Press, Cambridge. · Zbl 0858.60092
[21] Newman, C. M. and Schulman, L. S. (1986). One dimensional 1/| j - i | s percolation models: The existence of a transition for s \leq 2. Comm. Math. Phys. 104 547-571. · Zbl 0604.60097 · doi:10.1007/BF01211064
[22] Trapman, P. (2007). On analytical approaches to epidemics on networks. Theoretical Population Biology 71 160-173. · Zbl 1118.92055 · doi:10.1016/j.tpb.2006.11.002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.