×

Convex and star-shaped sets associated with multivariate stable distributions. I: Moments and densities. (English) Zbl 1196.60029

Summary: It is known that each symmetric stable distribution in \(\mathbb R^d\) is related to a norm on \(\mathbb R^d\) that makes \(\mathbb R^d\) embeddable in \(L_p([0,1]\)). In the case of a multivariate Cauchy distribution the unit ball in this norm is the polar set to a convex set in \(\mathbb R^d\) called a zonoid. This work interprets symmetric stable laws using convex or star-shaped sets and exploits recent advances in convex geometry in order to come up with new probabilistic results for multivariate symmetric stable distributions. In particular, it provides expressions for moments of the Euclidean norm of a stable vector, mixed moments and various integrals of the density function. It is shown how to use geometric inequalities in order to bound important parameters of stable laws. Furthermore, covariation, regression and orthogonality concepts for stable laws acquire geometric interpretations.

MSC:

60E07 Infinitely divisible distributions; stable distributions
60D05 Geometric probability and stochastic geometry
52A21 Convexity and finite-dimensional Banach spaces (including special norms, zonoids, etc.) (aspects of convex geometry)
52A30 Variants of convex sets (star-shaped, (\(m, n\))-convex, etc.)

References:

[1] Bretagnolle, J.; Dacunha Castelle, D.; Krivine, J. L., Lois stables et espaces \(L^p\), Ann. Inst. H. Poincaré, Sect. B, Prob. et Stat., 2, 231-259 (1966) · Zbl 0139.33501
[2] Herz, C. S., A class of negative-definite functions, Proc. Amer. Math. Soc., 14, 670-676 (1963) · Zbl 0178.54102
[3] Koldobsky, A., Fourier Analysis in Convex Geometry (2005), Amer. Math. Society: Amer. Math. Society Providence, RI · Zbl 1082.52002
[4] Schneider, R., Convex Bodies. The Brunn-Minkowski Theory (1993), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0798.52001
[5] Ferguson, T. S., A representation of the symmetric bivariate Cauchy distribution, Ann. Math. Statist., 33, 1256-1266 (1962) · Zbl 0111.33402
[6] Molchanov, I., Convex geometry of max-stable distributions, Extremes, 11, 235-259 (2008) · Zbl 1164.60003
[7] Mosler, K., (Multivariate Dispersion, Central Regions and Depth. The Lift Zonoid Approach. Multivariate Dispersion, Central Regions and Depth. The Lift Zonoid Approach, Lect. Notes Statist., vol. 165 (2002), Springer: Springer Berlin) · Zbl 1027.62033
[8] Firey, W. J., \(p\)-means of convex bodies, Math. Scand., 10, 17-24 (1962) · Zbl 0188.27303
[9] Lutwak, E., The Brunn-Minkowski-Firey theory. I. Mixed volumes and the Minkowski problem, J. Differential Geom., 38, 131-150 (1993) · Zbl 0788.52007
[10] Molchanov, I., Theory of Random Sets (2005), Springer: Springer London · Zbl 1109.60001
[11] Firey, W. J., Some means of convex bodies, Trans. Amer. Math. Soc., 129, 181-217 (1967) · Zbl 0168.19804
[12] Goodey, P.; Weil, W., Zonoids and generalizations, (Gruber, P. M.; Wills, J. M., Handbook of Convex Geometry (1993), North-Holland: North-Holland Amsterdam), 1299-1326 · Zbl 0791.52006
[13] Lutwak, E.; Yang, D.; Zhang, G., Volume inequalities for subspaces of \(L_p\), J. Differential Geom., 68, 159-184 (2004) · Zbl 1119.52006
[14] Koldobsky, A., Positive definite functions, stable measures, and isometries on Banach spaces, (Kalton, N.; Saab, E.; Montgomery-Smith, S., Interaction between Functional Analysis, Harmonic Analysis, and Probability. Interaction between Functional Analysis, Harmonic Analysis, and Probability, Lect. Notes in Pure Appl. Math., vol. 175 (1996), Marcel Dekker: Marcel Dekker New York), 275-290 · Zbl 0838.46012
[15] Samorodnitsky, G.; Taqqu, M. S., Stable Non-Gaussian Random Processes (1994), Chapman & Hall: Chapman & Hall New York · Zbl 0925.60027
[16] Grinberg, E.; Zhang, G., Convolutions, transforms, and convex bodies, Proc. London Math. Soc., 78, 77-115 (1999) · Zbl 0974.52001
[17] Koldobsky, A., Inverse formula for the Blaschke-Lévy representation, Houston J. Math., 23, 95-108 (1997) · Zbl 1002.52006
[18] Koldobsky, A., Generalized Lévy representation of norms and isometric embeddings into \(L_p\)-spaces, Ann. Inst. H. Poincaré, Sect. B, Prob. et Stat., 28, 335-353 (1992) · Zbl 0766.46009
[19] Cheng, B. N.; Rachev, S. T., Multivariate stable future prices, Math. Finance, 5, 133-153 (1995) · Zbl 0862.62089
[20] Nolan, J. P.; Panorska, A. K.; McCulloch, J. H., Estimation of stable spectral measures. stable non-Gaussian models in finance and econometrics, Math. Comput. Modelling, 34, 1113-1122 (2001) · Zbl 1004.62028
[21] Rachev, S. T.; Xin, H., Test for association of random variables in the domain of attraction of multivariate stable law, Probab. Math. Statist., 14, 125-141 (1993) · Zbl 0807.62047
[22] Kulikova, A. A.; Prokhorov, Yu. V., Uniform distributions on convex sets: Inequality for characteristic functions, Theory Probab. Appl., 47, 700-701 (2002) · Zbl 1054.60021
[23] Milman, V. D.; Pajor, A., Isotropic position and inertia ellipsoids and zonoids of the unit ball of a normed \(n\)-dimensional space, (GAFA-Seminar 1987-88. GAFA-Seminar 1987-88, Lect. Notes Math., vol. 1376 (1989), Springer: Springer Berlin), 64-104 · Zbl 0679.46012
[24] Leonenko, N.; Pronzato, L.; Savani, V., A class of Rényi information estimators for multidimensional densities, Ann. Statist., 36, 2153-2182 (2008) · Zbl 1205.94053
[25] Gel’fand, I. M.; Shilov, G. E., Generalized Functions. vol. 1. Properties and Operations (1964), Academic Press: Academic Press New York and London · Zbl 0115.33101
[26] Uchaikin, V. V.; Zolotarev, V. M., Chance and Stability. Stable Distributions and Their Applications (1999), VSP: VSP Utrecht · Zbl 0944.60006
[27] Lutwak, E., The Brunn-Minkowski-Firey theory. II. Affine and geominimal surface areas, Adv. Math., 118, 244-294 (1996) · Zbl 0853.52005
[28] Lutwak, E.; Yang, D.; Zhang, G., Moment-entropy inequalities, Ann. Probab., 32, 757-774 (2004) · Zbl 1053.60004
[29] Pisier, G., The Volume of Convex Bodies and Banach Space Geometry (1989), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0698.46008
[30] Litvak, A.; Milman, V. D.; Schechtman, G., Averages of norms and quasi-norms, Math. Ann., 312, 95-124 (1998) · Zbl 0920.46006
[31] Gardner, R. J.; Koldobsky, A.; Schlumprecht, Th., An analytic solution of the Busemann-Petty problem on sections of convex bodies, Ann. of Math., 149, 691-703 (1999) · Zbl 0937.52003
[32] Koshevoy, G. A.; Mosler, K., Lift zonoids, random convex hulls and the variability of random vectors, Bernoulli, 4, 377-399 (1998) · Zbl 0945.52006
[33] Koshevoy, G. A.; Mosler, K., Zonoid trimming for multivariate distributions, Ann. Statist., 25, 1998-2017 (1997) · Zbl 0881.62059
[34] Pivato, M.; Seco, L., Estimating the spectral measure of a multivariate stable distribution via spherical harmonic analysis, J. Multivariate Anal., 87, 219-240 (2003) · Zbl 1041.60019
[35] Davydov, Yu.; Nagaev, A. V., On two approaches to approximation of multidimensional stable laws, J. Multivariate Anal., 82, 210-239 (2002) · Zbl 1023.60022
[36] Nolan, J. P., Multivariate stable distributions: Approximation, estimation, simulation and identification, (Adler, R. J.; Feldman, R. E.; Taqqu, M. S., A Practical Guide to Heavy Tails (1998), Birkhäuser: Birkhäuser Boston), 509-526 · Zbl 0927.60021
[37] Zolotarev, V. M., Modern Theory of Summation of Independent Random Variables (1997), VSP: VSP Utrecht · Zbl 0907.60001
[38] Nolan, J. P.; Panorska, A. K., Data analysis for heavy tailed multivariate samples, Stoch. Models, 13, 687-702 (1997) · Zbl 0899.60011
[39] Byczkowski, T.; Nolan, J. P.; Rajput, B., Approximation of multivariate stable densities, J. Multivariate Anal., 46, 13-31 (1993) · Zbl 0790.60020
[40] Gardner, R. J., Geometric Tomography (1995), Cambridge Univ. Press: Cambridge Univ. Press Cambridge · Zbl 0864.52001
[41] Belkacem, L.; Véhel, J. L.; Walter, Ch., CAPM, risk and portfolio selection in “stable” markets, Fractals, 8, 99-115 (2000) · Zbl 1047.91531
[42] Giannopoulos, A.; Milman, V. D.; Rudelson, M., Convex bodies with minimal mean width, (Milman, V. D.; Schechtman, G., Geometric Aspects of Functional Analysis. Geometric Aspects of Functional Analysis, Lect. Notes Math., vol. 1745 (2000), Springer: Springer Berlin), 81-93 · Zbl 0978.52001
[43] Meyer, M., A volume inequality concerning sections of convex sets, Bull. London Math. Soc., 20, 151-155 (1988) · Zbl 0639.52009
[44] Kamae, T.; Krengel, U.; O’Brien, G. L., Stochastic inequalities on partially ordered spaces, Ann. Probab., 5, 899-912 (1977) · Zbl 0371.60013
[45] Lindenstrauss, J.; Milman, V. D., Local theory of normed spaces and convexity, (Gruber, P. M.; Wills, J. M., Handbook of Convex Geometry (1993), North-Holland: North-Holland Amsterdam), 1149-1220 · Zbl 0791.52003
[46] Araujo, A.; Giné, E., The Central Limit Theorem for Real and Banach Valued Random Variables (1980), Wiley: Wiley New York · Zbl 0457.60001
[47] Miller, G., Properties of certain symmetric stable distributions, J. Multivariate Anal., 8, 346-360 (1978) · Zbl 0394.62034
[48] Thompson, A. C., Minkowski Geometry (1996), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0868.52001
[49] Juhnke, F., Polarity of embedded and circumscribed ellipsoids, Beitr. Alg. Geom., 36, 17-24 (1995) · Zbl 0819.52007
[50] Day, M. M., Some characterizations of inner product spaces, Trans. Amer. Math. Soc., 62, 32-337 (1947) · Zbl 0034.21703
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.