×

Number of least area planes in Gromov hyperbolic 3-spaces. (English) Zbl 1196.53007

The author has a multitude of remarkable results in the field of Plateau problems in hyperbolic spaces, involving existence and uniqueness problems, area-minimizing surfaces, and related topics. In this specific paper, he shows that, given a simple closed curve in the asymptotic boundary of a Gromov hyperbolic 3-space with cocompact metric, there exists a UNIQUE least area plane (with respect to the metric).

MSC:

53A10 Minimal surfaces in differential geometry, surfaces with prescribed mean curvature
57M50 General geometric structures on low-dimensional manifolds

References:

[1] Michael T. Anderson, Complete minimal varieties in hyperbolic space, Invent. Math. 69 (1982), no. 3, 477 – 494. · Zbl 0515.53042 · doi:10.1007/BF01389365
[2] Michael T. Anderson, Complete minimal hypersurfaces in hyperbolic \?-manifolds, Comment. Math. Helv. 58 (1983), no. 2, 264 – 290. · Zbl 0549.53058 · doi:10.1007/BF02564636
[3] Mladen Bestvina and Geoffrey Mess, The boundary of negatively curved groups, J. Amer. Math. Soc. 4 (1991), no. 3, 469 – 481. · Zbl 0767.20014
[4] Danny Calegari, Almost continuous extension for taut foliations, Math. Res. Lett. 8 (2001), no. 5-6, 637 – 640. · Zbl 1004.53022 · doi:10.4310/MRL.2001.v8.n5.a5
[5] Baris Coskunuzer, Uniform 1-cochains and genuine laminations, Topology 45 (2006), no. 4, 751 – 784. · Zbl 1151.57018 · doi:10.1016/j.top.2006.03.002
[6] Baris Coskunuzer, Generic uniqueness of least area planes in hyperbolic space, Geom. Topol. 10 (2006), 401 – 412. · Zbl 1128.53008 · doi:10.2140/gt.2006.10.401
[7] Baris Coskunuzer, Properly embedded least area planes in Gromov hyperbolic 3-spaces, Proc. Amer. Math. Soc. 136 (2008), no. 4, 1427 – 1432. · Zbl 1131.53029
[8] B. Coskunuzer, On the Number of Solutions to Asymptotic Plateau Problem, eprint; math.DG/0505593 · Zbl 1267.53059
[9] Baris Coskunuzer, Least area planes in hyperbolic 3-space are properly embedded, Indiana Univ. Math. J. 58 (2009), no. 1, 381 – 392. · Zbl 1161.53006 · doi:10.1512/iumj.2009.58.3447
[10] B. Coskunuzer, Asymptotic Plateau problem, eprint; arXiv:0907.0552 · Zbl 1326.53079
[11] Sérgio R. Fenley, Foliations with good geometry, J. Amer. Math. Soc. 12 (1999), no. 3, 619 – 676. · Zbl 0930.53024
[12] David Gabai, On the geometric and topological rigidity of hyperbolic 3-manifolds, J. Amer. Math. Soc. 10 (1997), no. 1, 37 – 74. · Zbl 0870.57014
[13] David Gabai and William H. Kazez, Group negative curvature for 3-manifolds with genuine laminations, Geom. Topol. 2 (1998), 65 – 77. · Zbl 0905.57011 · doi:10.2140/gt.1998.2.65
[14] M. Gromov, Hyperbolic groups, Essays in group theory, Math. Sci. Res. Inst. Publ., vol. 8, Springer, New York, 1987, pp. 75 – 263. · Zbl 0634.20015 · doi:10.1007/978-1-4613-9586-7_3
[15] Robert Hardt and Fang-Hua Lin, Regularity at infinity for area-minimizing hypersurfaces in hyperbolic space, Invent. Math. 88 (1987), no. 1, 217 – 224. · Zbl 0633.49020 · doi:10.1007/BF01405098
[16] Joel Hass and Peter Scott, The existence of least area surfaces in 3-manifolds, Trans. Amer. Math. Soc. 310 (1988), no. 1, 87 – 114. · Zbl 0711.53008
[17] Urs Lang, The asymptotic Plateau problem in Gromov hyperbolic manifolds, Calc. Var. Partial Differential Equations 16 (2003), no. 1, 31 – 46. · Zbl 1055.49028 · doi:10.1007/s005260100140
[18] William H. Meeks III and Shing Tung Yau, The classical Plateau problem and the topology of three-dimensional manifolds. The embedding of the solution given by Douglas-Morrey and an analytic proof of Dehn’s lemma, Topology 21 (1982), no. 4, 409 – 442. · Zbl 0489.57002 · doi:10.1016/0040-9383(82)90021-0
[19] Teruhiko Soma, Existence of least area planes in hyperbolic 3-space with co-compact metric, Topology 43 (2004), no. 3, 705 – 716. · Zbl 1058.53052 · doi:10.1016/j.top.2003.10.006
[20] Teruhiko Soma, Least area planes in Gromov hyperbolic 3-spaces with co-compact metric, Geom. Dedicata 112 (2005), 123 – 128. · Zbl 1078.57016 · doi:10.1007/s10711-004-3241-x
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.