×

Accurate basis set by the CIP method for the solutions of the Schrödinger equation. (English) Zbl 1196.35012

Summary: We propose a basis set approach by the Constrained Interpolation Profile (CIP) method for the calculation of bound and continuum wave functions of the Schrödinger equation. This method uses a simple polynomial basis set that is easily extendable to any desired higher-order accuracy. The interpolating profile is chosen so that the subgrid scale solution approaches the local real solution by the constraints from the spatial derivative of the original equation. Thus the solution even on the subgrid scale becomes consistent with the master equation. By increasing the order of the polynomial, this solution quickly converges. The method is tested on the one-dimensional Schrödinger equation and is proven to give solutions a few orders of magnitude higher in accuracy than conventional methods for the lower-lying eigenstates. The method is straightforwardly applicable to various types of partial differential equations.

MSC:

35-04 Software, source code, etc. for problems pertaining to partial differential equations
35Q55 NLS equations (nonlinear Schrödinger equations)
Full Text: DOI

References:

[1] Huens, E.; Piraux, B.; Bugacov, A.; Gajda, M., Phys. Rev. A, 55, 2132 (1997)
[2] Cadilhe, M. W.; Neto, J. J.S., Comput. Phys. Comm., 136, 183 (2001) · Zbl 0973.81015
[3] Yabe, T.; Aoki, T., Comput. Phys. Comm., 66, 219 (1991) · Zbl 0991.65521
[4] Yabe, T.; Ishikawa, T.; Wang, P. Y., Comput. Phys. Comm., 66, 233 (1991)
[5] de Boor, C., A Practical Guide to Splines (1978), Springer-Verlag: Springer-Verlag New York · Zbl 0406.41003
[6] Takewaki, H.; Nishiguchi, A.; Yabe, T., J. Comput. Phys., 61, 261 (1985) · Zbl 0607.65055
[7] Yabe, T.; Takei, E., J. Phys. Soc. Japan, 57, 2598 (1988)
[8] Tajima, T., Computational Plasma Physics (1989), Addison-Wesley
[9] Yabe, T.; Xiao, F.; Utsumi, T., J. Comput. Phys., 169, 556 (2001) · Zbl 1047.76104
[10] Yabe, T., Shock Waves, 1, 187 (1991)
[11] Yabe, T.; Xiao, F., Nucl. Engrg. Design, 155, 45 (1995)
[12] Yabe, T., Geophys. Res. Lett., 22, 2429 (1995)
[13] Utsumi, T.; Koga, J., Comput. Phys. Comm., 148, 267 (2002) · Zbl 1196.81117
[14] Utsumi, T.; Koga, J., Comput. Phys. Comm., 148, 281 (2002) · Zbl 1196.81118
[15] Aoki, T., Comput. Phys. Comm., 102, 132 (1997)
[16] Press, W. H., Numerical Recipes in Fortran 77 (1986), Cambridge Univ. Press
[17] Schneider, B. I., Phys. Rev. A, 55, 3417 (1997)
[18] Flügge, S., Practical Quantum Mechanics (1971), Springer-Verlag: Springer-Verlag New York · Zbl 1400.81003
[19] Braun, M.; Sofianos, S. A.; Papageorgiou, D. G.; Lagaris, I. E., J. Comput. Phys., 126, 315 (1996) · Zbl 0856.65123
[20] Wei, G. W.; Zhang, D. S.; Kouri, D. J.; Hoffman, D. K., Phys. Rev. Lett., 79, 775 (1997)
[21] Hindmarsh, A. C.; Balsdon, S., ACM-SIGNUM Newslett., 15, 10 (1980)
[22] Nurhuda, M.; Faisal, F. H.M., Phys. Rev. A, 60, 3125 (1999)
[23] Schwarz, H. R., Finite Element Method (1988), Academic Press: Academic Press New York · Zbl 0673.65065
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.