×

Peak points for pseudoconvex domains: A survey. (English) Zbl 1196.32020

The paper under review is an excellent survey article discussing various aspects of the existence of local and/or global peak functions in \(\mathcal C^\infty\)-smooth pseudoconvex domains. Some of the presented results have not been published elsewhere.
Contents: 5mm
1.
Introduction;
2.
Background information and the strictly pseudoconvex case;
3.
Finite type, the Kohn-Nirenberg domain, and strict type;
4.
The sector method;
5.
Alternative constructions of peak functions;
6.
Domains of finite type in \(\mathbb C^n\);
7.
Miscellany.

MSC:

32T40 Peak functions
32-02 Research exposition (monographs, survey articles) pertaining to several complex variables and analytic spaces

References:

[1] Basener, R.: Peak points, barriers and pseudoconvex boundary points. Proc. Am. Math. Soc. 65(1), 89–92 (1977) · Zbl 0392.32003 · doi:10.1090/S0002-9939-1977-0466633-9
[2] Bedford, E., Fornæss, J.E.: A construction of peak functions on weakly pseudoconvex domains. Ann. Math. (2) 107(3), 555–568 (1978) · Zbl 0392.32004 · doi:10.2307/1971128
[3] Bedford, E., Fornæss, J.E.: Biholomorphic maps of weakly pseudoconvex domains. Duke Math. J. 45(4), 711–719 (1978) · Zbl 0401.32006 · doi:10.1215/S0012-7094-78-04533-7
[4] Bell, S.: Differentiability of the Bergman kernel and pseudolocal estimates. Math. Z. 192(3), 467–472 (1986) · Zbl 0594.32025 · doi:10.1007/BF01164021
[5] Bharali, G., Stensønes, B.: Plurisubharmonic polynomials and bumping, arXiv:0709.3993v2 . Math. Z. (2008, to appear) · Zbl 1185.32025
[6] Bloom, T.: \(\mathcal{C}^{\infty}\) peak functions for pseudoconvex domains of strict type. Duke Math. J. 45(1), 133–147 (1978) · Zbl 0376.32014 · doi:10.1215/S0012-7094-78-04510-6
[7] Boas, H.: Extension of Kerzman’s theorem on differentiability of the Bergman kernel function. Indiana Univ. Math. J. 36(3), 495–499 (1987) · Zbl 0628.32030 · doi:10.1512/iumj.1987.36.36027
[8] Browder, A.: Introduction to Function Algebras. Benjamin, Elmsford (1969) · Zbl 0199.46103
[9] Catlin, D.: Boundary invariants of pseudoconvex domains. Ann. Math. (2) 120(3), 529–586 (1984) · Zbl 0583.32048 · doi:10.2307/1971087
[10] Chaumat, J., Chollet, A.M.: Ensemble de zéros, ensembles pics et d’interpolation pour A(D). Colloque d’Analyse Harmonique et Complexe, 5 p. (not consecutively paged). Univ. Aix-Marseille I, Marseille (1977) · Zbl 0473.32009
[11] Chen, S.C.: A counterexample to the differentiability of the Bergman kernel function. Proc. Am. Math. Soc. 124(6), 1807–1810 (1996) · Zbl 0865.32016 · doi:10.1090/S0002-9939-96-03290-X
[12] Cho, S.: A construction of peak functions on locally convex domains in C n . Nagoya Math. J. 140, 167–176 (1995) · Zbl 0848.32010
[13] Cho, S.: Peak function and its applications. J. Korean Math. Soc. 33(2), 399–411 (1996) · Zbl 0870.32005
[14] D’Angelo, J.: Several Complex Variables and the Geometry of Real Hypersurfaces. Studies in Advanced Mathematics. CRC, Boca Raton (1993)
[15] Diederich, K., Fornæss, J.E.: Pseudoconvex domains: an example with nontrivial Nebenhülle. Math. Ann. 225(3), 275–292 (1977) · doi:10.1007/BF01425243
[16] Diederich, K., Fornæss, J.E.: Pseudoconvex domains: existence of Stein neighborhoods. Duke Math. J. 44(3), 641–662 (1977) · Zbl 0381.32014 · doi:10.1215/S0012-7094-77-04427-1
[17] Diederich, K., Fornæss, J.E.: Pseudoconvex domains with real-analytic boundary. Ann. Math. (2) 107(2), 371–384 (1978) · Zbl 0378.32014 · doi:10.2307/1971120
[18] Diederich, K., Fornæss, J.E.: Support functions for convex domains of finite type. Math. Z. 230(1), 145–164 (1999) · Zbl 1045.32016 · doi:10.1007/PL00004683
[19] Diederich, K., Fornæss, J.E.: Lineally convex domains of finite type: holomorphic support functions. Manuscr. Math. 112(4), 403–431 (2003) · Zbl 1066.32016 · doi:10.1007/s00229-003-0418-9
[20] Diederich, K., Herbort, G.: Pseudoconvex domains of semiregular type. In: Contributions to Complex Analysis and Analytic Geometry. Aspects Math., vol. E26, pp. 127–161. Vieweg, Wiesbaden (1994) · Zbl 0845.32019
[21] Fornæss, J.E.: Peak points on weakly pseudoconvex domains. Math. Ann. 227(2), 173–175 (1977) · Zbl 0346.32026 · doi:10.1007/BF01350193
[22] Fornæss, J.E.: Sup-norm estimates for \(\overline{\partial}\) in C 2. Ann. Math. (2) 123(2), 335–345 (1986) · Zbl 0589.32038 · doi:10.2307/1971275
[23] Fornæss, J.E., Krantz, S.G.: Continuously varying peaking functions. Pac. J. Math. 83(2), 341–347 (1979) · Zbl 0425.46039
[24] Fornæss, J.E., McNeal, J.: A construction of peak functions on some finite type domains. Am. J. Math. 116(3), 737–755 (1994) · Zbl 0809.32005 · doi:10.2307/2374998
[25] Fornæss, J.E., Rea, C.: Local holomorphic extendability and nonextendability of CR-functions on smooth boundaries. Ann. Sc. Norm. Super Pisa Cl. Sci. (4) 12(3), 491–502 (1985) · Zbl 0587.32035
[26] Fornæss, J.E., Sibony, N.: Construction of P.S.H. functions on weakly pseudoconvex domains. Duke Math. J. 58(3), 633–655 (1989) · Zbl 0679.32017 · doi:10.1215/S0012-7094-89-05830-4
[27] Fornæss, J.E., Stensønes, B.: Lectures on Counterexamples in Several Complex Variables. Math. Notes, vol. 33. Princeton Univ. Press, Princeton (1987) · Zbl 1126.32001
[28] Freeman, M.: Local complex foliation of real submanifolds. Math. Ann. 209, 1–30 (1974) · doi:10.1007/BF01432883
[29] Gamelin, T.W.: Peak points for algebras on circled sets. Math. Ann. 238(2), 131–139 (1978) · doi:10.1007/BF01424770
[30] Gay, R., Sebbar, A.: Division et extension dans l’algèbre A {\(\Omega\)}) d’un ouvert pseudo-convexe à bord lisse de C n . Math. Z. 189(3), 421–447 (1985) · doi:10.1007/BF01164163
[31] Graham, I.: Boundary behavior of the Carathéodory and Kobayashi metrics on strongly pseudoconvex domains in C n with smooth boundary. Trans. Am. Math. Soc. 207, 219–240 (1975) · Zbl 0305.32011
[32] Hakim, M., Sibony, N.: Frontière de Ŝilov et spectre de \(A(\overline{D})\) pour des domaines faiblement pseudoconvexes. C. R. Acad. Sci. Paris Sér. A–B 281(22), A959–A962 (1975) · Zbl 0324.46058
[33] Hakim, M., Sibony, N.: Quelques conditions pour l’existence de fonctions pics dans des domaines pseudoconvexes. Duke Math. J. 44(2), 399–406 (1977) · Zbl 0354.32028 · doi:10.1215/S0012-7094-77-04418-0
[34] Herbort, G.: Invariant metrics and peak functions on pseudoconvex domains of homogeneous finite diagonal type. Math. Z. 209(2), 223–243 (1992) · doi:10.1007/BF02570831
[35] Herbort, G.: Localization lemmas for the Bergman metric at plurisubharmonic peak points. Nagoya Math. J. 171, 107–125 (2003) · Zbl 1045.32009
[36] Iordan, A.: Pseudoconvex domains with peak functions at each point of the boundary. Pac. J. Math. 133(2), 277–287 (1988) · Zbl 0619.32012
[37] Kerzman, N.: The Bergman kernel function. Differentiability at the boundary. Math. Ann. 195, 149–158 (1972) · doi:10.1007/BF01419622
[38] Kohn, J.J.: Boundary behavior of \(\overline{\partial}\) on weakly pseudo-convex manifolds of dimension two. J. Differ. Geom. 6, 523–542 (1972) · Zbl 0256.35060
[39] Kohn, J.J.: Global regularity for \(\overline{\partial}\) on weakly pseudo-convex manifolds. Trans. Am. Math. Soc. 181, 273–292 (1973) · Zbl 0276.35071
[40] Kohn, J.J.: Methods of partial differential equations in complex analysis. In: Several Complex Variables, Part 1. Proc. Sympos. Pure Math., vol. XXX, Williams Coll., Williamstown, MA, 1975, pp. 215–237. Am. Math. Soc., Providence (1977)
[41] Kohn, J.J., Nirenberg, L.: A pseudo-convex domain not admitting a holomorphic support function. Math. Ann. 201, 265–268 (1973) · Zbl 0248.32013 · doi:10.1007/BF01428194
[42] Kolář, M.: Convexifiability and supporting functions in C 2. Math. Res. Lett. 2(4), 505–513 (1995) · Zbl 0846.32011
[43] Kolář, M.: Peak functions on convex domains. In: The Proceedings of the 19th Winter School ”Geometry and Physics” (Srní, 1999). Rend. Circ. Mat. Palermo (2) Suppl. No. 63, pp. 103–112 (2000) · Zbl 0976.32018
[44] Laszlo, G.: Peak functions on finite type domains in C 2. Dissertation, Oklahoma State University (2000)
[45] Levi, E.E.: Studii sui punti singolari essenziali delle funzioni analitiche di due o più variabili complesse. Ann. Mat. Pura Appl. 17, 61–87 (1910) · JFM 41.0487.01
[46] Levi, E.E.: Sulle ipersuperficie dello spazio a 4 dimensioni che possono essere frontiera del campo di esistenza di una funzione analitica di due variabili complesse. Ann. Mat. Pura Appl. 18, 69–79 (1911) · JFM 42.0449.02
[47] McNeal, J.: Lower bounds on the Bergman metric near a point of finite type. Ann. Math. (2) 136(2), 339–360 (1992) · Zbl 0764.32006 · doi:10.2307/2946608
[48] Noell, A.: Properties of peak sets in weakly pseudoconvex boundaries in C 2. Math. Z. 186, 99–116 (1984) · doi:10.1007/BF01215494
[49] Noell, A.: Peak points in boundaries not of finite type. Pac. J. Math. 123(2), 385–390 (1986) · Zbl 0563.32006
[50] Noell, A.: Interpolation from curves in pseudoconvex boundaries. Mich. Math. J. 37(2), 275–281 (1990) · Zbl 0719.32013 · doi:10.1307/mmj/1029004134
[51] Noell, A.: Peak functions for pseudoconvex domains in C n . In: Several Complex Variables, Stockholm, 1987/1988. Math. Notes, vol. 38, pp. 529–541. Princeton Univ. Press, Princeton (1993) · Zbl 0774.32011
[52] Noell, A., Stensønes, B.: Proper holomorphic maps from weakly pseudoconvex domains. Duke Math. J. 60(2), 363–388 (1990) · Zbl 0716.32017
[53] Pflug, P.: Über polynomiale Funktionen auf Holomorphiegebieten. Math. Z. 139, 133–139 (1974) · Zbl 0287.32011
[54] Pflug, P.: Quadratintegrable holomorphe Funktionen und die Serre-Vermutung. Math. Ann. 216, 285–288 (1975) · Zbl 0294.32009
[55] Range, R.M.: Hölder estimates for \(\overline{\partial}\) on convex domains in C 2 with real analytic boundary. In: Several Complex Variables, Part 2. Proc. Sympos. Pure Math., vol. XXX, Williams Coll., Williamstown, MA, 1975, pp. 31–33. Am. Math. Soc., Providence (1977)
[56] Range, R.M.: The Carathéodory metric and holomorphic maps on a class of weakly pseudoconvex domains. Pac. J. Math. 78(1), 173–189 (1978) · Zbl 0396.32005
[57] Range, R.M.: On Hölder estimates for \(\overline{\partial}u=f\) on weakly pseudoconvex domains. In: Several Complex Variables, Cortona, 1976/1977, pp. 247–267. Scuola Norm. Sup. Pisa, Pisa (1978)
[58] Rossi, H.: Holomorphically convex sets in several complex variables. Ann. Math. (2) 74, 470–493 (1961) · Zbl 0107.28601
[59] Sibony, N.: Un exemple de domaine pseudoconvexe régulier où l’équation \(\bar{\partial}u=f\) n’admet pas de solution bornée pour f bornée. Invent. Math. 62(2), 235–242 (1980/81)
[60] Sibony, N.: Some aspects of weakly pseudoconvex domains, Part 1. In: Several Complex Variables and Complex Geometry, Santa Cruz, CA, 1989, Proc. Sympos. Pure Math., vol. 52, pp. 199–231. Am. Math. Soc., Providence (1991)
[61] Verdera, J.: A remark on zero and peak sets on weakly pseudoconvex domains. Bull. Lond. Math. Soc. 16(4), 411–412 (1984) · Zbl 0578.32025
[62] Weinstock, B.: Zero-sets of continuous holomorphic functions on the boundary of a strongly pseudoconvex domain. J. Lond. Math. Soc. (2) 18(3), 484–488 (1978) · Zbl 0413.32008
[63] Yu, J.: Geometric analysis on weakly pseudoconvex domains. Dissertation, Washington University, St. Louis (1993)
[64] Yu, J.: Multitypes of convex domains. Indiana Univ. Math. J. 41(3), 837–849 (1992) · Zbl 0759.32009
[65] Yu, J.: Peak functions on weakly pseudoconvex domains. Indiana Univ. Math. J. 43(4), 1271–1295 (1994) · Zbl 0828.32003
[66] Yu, J.: Weighted boundary limits of the generalized Kobayashi-Royden metrics on weakly pseudoconvex domains. Trans. Am. Math. Soc. 347(2), 587–614 (1995) · Zbl 0814.32006
[67] Yu, J.: A counterexample to the existence of peaking functions. Proc. Am. Math. Soc. 125(8), 2385–2390 (1997) · Zbl 0896.32007 · doi:10.1090/S0002-9939-97-03936-1
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.