×

On the integrability of symplectic Monge-Ampère equations. (English) Zbl 1195.35109

Summary: Let \(u\) be a function of \(n\) independent variables \(x^{1},\ldots ,x^n\), and let \(U=(u_{ij})\) be the Hessian matrix of \(u\). The symplectic Monge-Ampère equation is defined as a linear relation among all possible minors of \(U\). Particular examples include the equation \(\det U=1\) governing improper affine spheres and the so-called heavenly equation, \(u_{13}u_{24} - u_{23}u_{14}=1\), describing self-dual Ricci-flat 4-manifolds. In this paper, we classify integrable symplectic Monge-Ampère equations in four dimensions (for \(n=3\) the integrability of such equations is known to be equivalent to their linearisability). This problem can be reformulated geometrically as the classification of ‘maximally singular’ hyperplane sections of the Plücker embedding of the Lagrangian Grassmannian. We formulate a conjecture that any integrable equation of the form \(F(u_{ij})=0\) in more than three dimensions is necessarily of symplectic Monge-Ampère type.

MSC:

35L70 Second-order nonlinear hyperbolic equations
35Q75 PDEs in connection with relativity and gravitational theory
35J96 Monge-Ampère equations
35K96 Parabolic Monge-Ampère equations

References:

[1] Boillat, G., Sur l’équation générale de Monge-Ampère á plusieurs variables, [On the general Monge-Ampère equation in several dimensions], C. R. Acad. Sci., Paris Sér. I Math., 313, 11, 805-808 (1991) · Zbl 0753.35107
[2] Lychagin, V. V.; Rubtsov, V. N.; Chekalov, I. V., A classification of Monge-Ampère equations, Ann. Sci. Éc. Norm. Supér., 26, 4, 281-308 (1993) · Zbl 0789.58078
[3] Banos, B., On symplectic classification of effective 3-forms and Monge-Ampère equations, Differential Geom. Appl., 19, 147-166 (2003) · Zbl 1035.34004
[4] Ball, J. M.; Currie, J. C.; Olver, P. J., Null Lagrangians, weak continuity, and variational problems of arbitrary order, J. Funct. Anal., 41, 2, 135-174 (1981) · Zbl 0459.35020
[5] Kushner, A.; Vychagin, V. V.; Rubtsov, V. N., (Contact Geometry and Nonlinear Differential Equations. Contact Geometry and Nonlinear Differential Equations, Encyclopedia of Mathematics and its Applications, vol. 101 (2007), Cambridge University Press) · Zbl 1122.53044
[6] Calabi, E., Improper affine hyperspheres of convex type and a generalization of a theorem by K. Jorgens, Michigan Math. J., 5, 105-126 (1958) · Zbl 0113.30104
[7] Joyce, D., Lectures on special Lagrangian geometry, (Global Theory of Minimal Surfaces. Global Theory of Minimal Surfaces, Clay Math. Proc., vol. 2 (2005), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI), 667-695 · Zbl 1102.53037
[8] Ferapontov, E. V.; Hadjikos, L.; Khusnutdinova, K. R., Integrable equations of the dispersionless Hirota type and hypersurfaces in the Lagrangian Grassmannian, Int. Math. Res. Not. (2007)
[9] Ferapontov, E. V.; Khusnutdinova, K. R., On the integrability of \((2 + 1)\)-dimensional quasilinear systems, Comm. Math. Phys., 248, 187-206 (2004) · Zbl 1070.37047
[10] Ferapontov, E. V.; Pavlov, M. V., Hydrodynamic reductions of the heavenly equation, Classical Quantum Gravity, 20, 2429-2441 (2003) · Zbl 1029.83022
[11] Ferapontov, E. V.; Khusnutdinova, K. R., Hydrodynamic reductions of multi-dimensional dispersionless PDEs: the test for integrability, J. Math. Phys., 45, 2365-2377 (2004) · Zbl 1071.35118
[12] Landsberg, J. M.; Manivel, L., The projective geometry of Freudental’s magic square, J. Algebra, 239, 477-512 (2001) · Zbl 1064.14053
[13] Landsberg, J. M.; Manivel, L., Construction and classification of complex simple Lie algebras via projective geometry, Selecta Math. (NS), 8, 137-159 (2002) · Zbl 1073.14551
[14] S. Mukai, Simple Lie algebras and Legendre variety, Preprint, Translation of the Article in Nagoya Suri Forum, vol. 3, 1996, pp. 1-12.; S. Mukai, Simple Lie algebras and Legendre variety, Preprint, Translation of the Article in Nagoya Suri Forum, vol. 3, 1996, pp. 1-12.
[15] Plebański, J. F., Some solutions of complex Einstein equations, J. Math. Phys., 16, 2395-2402 (1975)
[16] Atiyah, M. F.; Hitchin, N. J.; Singer, I. M., Self-duality in four-dimensional Riemannian geometry, Proc. R. Soc. Lond. Ser. A, 362, 1711, 425-461 (1978) · Zbl 0389.53011
[17] Husain, V., Self-dual gravity as a two-dimensional theory and conservation laws, Classical Quantum Gravity, 11, 4, 927-937 (1994)
[18] Takasaki, K., An infinite number of hidden variables in hyper-Kähler metrics, J. Math. Phys., 30, 7, 1515-1521 (1989) · Zbl 0683.53017
[19] Takasaki, K., Symmetries of hyper-Kähler (or Poisson gauge field) hierarchy, J. Math. Phys., 31, 8, 1877-1888 (1990) · Zbl 0718.53050
[20] Strachan, I. A.B., The symmetry structure of the anti-self-dual Einstein hierarchy, J. Math. Phys., 36, 7, 3566-3573 (1995) · Zbl 0844.58035
[21] Grant, J. D.E., On self-dual gravity, Phys. Rev. D, 47, 2606-2612 (1993)
[22] Dunajski, M.; Mason, L. J., Twistor theory of hyper-Kähler metrics with hidden symmetries. Integrability, topological solitons and beyond, J. Math. Phys., 44, 8, 3430-3454 (2003) · Zbl 1062.53038
[23] Dunajski, M.; Mason, L. J., Hyper-Kähler hierarchies and their twistor theory, Comm. Math. Phys., 213, 3, 641-672 (2000) · Zbl 0988.53021
[24] Neyzi, F.; Nutku, Y.; Sheftel, M. B., Multi-Hamiltonian structure of Plebanski’s second heavenly equation, J. Phys. A, 38, 39, 8473-8485 (2005) · Zbl 1081.83006
[25] Sheftel, M. B.; Malykh, A. A., On classification of second-order PDEs possessing partner symmetries, J. Phys. A, 42, 39, 395202 (2009), 20 pp · Zbl 1180.35038
[26] Bogdanov, L. V.; Konopelchenko, B. G., On the heavenly equation hierarchy and its reductions, J. Phys. A, 39, 38, 11793-11802 (2006) · Zbl 1099.37049
[27] Bogdanov, L. V.; Konopelchenko, B. G., On the \(\overline{\partial} \)-dressing method applicable to heavenly equation, Phys. Lett. A, 345, 1-3, 137-143 (2005) · Zbl 1345.37067
[28] A.V. Odesskii, V.V. Sokolov, Integrable pseudopotentials related to generalized hypergeometric functions arXiv:0803.0086.; A.V. Odesskii, V.V. Sokolov, Integrable pseudopotentials related to generalized hypergeometric functions arXiv:0803.0086.
[29] A.D. Smith, Integrability of second-order partial differential equations and the geometry of \(G L ( 2 )\)-structures, Ph.D. Thesis, Department of Mathematics, Duke University, 2009.; A.D. Smith, Integrability of second-order partial differential equations and the geometry of \(G L ( 2 )\)-structures, Ph.D. Thesis, Department of Mathematics, Duke University, 2009.
[30] S.K. Donaldson, Nahm’s equations and free-boundary problems arXiv:0709.0184.; S.K. Donaldson, Nahm’s equations and free-boundary problems arXiv:0709.0184. · Zbl 1211.58015
[31] Plebański, J. F.; Przanowski, M., The Lagrangian for a self-dual gravitational field as a limit of the SDYM Lagrangian, Phys. Lett. A, 212, 22-28 (1996) · Zbl 1073.83511
[32] Manakov, S. V.; Santini, P. M., Inverse scattering problem for vector fields and the Cauchy problem for the heavenly equation, Phys. Lett. A, 359, 6, 613-619 (2006) · Zbl 1236.37042
[33] S.V. Manakov, P.M. Santini, On the solutions of the second heavenly and Pavlov equations arXiv:0812.3323.; S.V. Manakov, P.M. Santini, On the solutions of the second heavenly and Pavlov equations arXiv:0812.3323. · Zbl 1184.35279
[34] Katanova, A. A., Explicit form of certain multivector invariants, Adv. Sov. Math., 8, 87-93 (1992) · Zbl 0748.15028
[35] Tsarev, S. P., The geometry of Hamiltonian systems of hydrodynamic type. The generalized hodograph method, Math. USSR Izv., 37, 397-419 (1991) · Zbl 0796.76014
[36] Mokhov, O. I., Symplectic and Poisson geometry on loop spaces of smooth manifolds and integrable equations, (Reviews in Mathematics and Mathematical Physics, vol. 11, Part 2 (2001), Harwood Academic Publishers: Harwood Academic Publishers Amsterdam), 204 pp · Zbl 1230.53075
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.