×

Non-commutative Schur-Horn theorems and extended majorization for Hermitian matrices. (English) Zbl 1195.15039

The Schur-Horn theorem states: There exists a Hermitian matrix \(A\in {\mathcal M}_n(\mathbb C)\) with main diagonal \(x\in {\mathbb R}^n\) and spectrum (counting multiplicity) \(y\in {\mathbb R}^n\) if and only if \(x^{\downarrow}\) is majorized by \(y^{\downarrow}\), where \(x^{\downarrow}=(x^{\downarrow}_1,\dots,x^{\downarrow}_n)\) denotes the vector obtained by rearranging the entries of \(x\) in nonincreasing order, and the majorization relationship \(x^{\downarrow}\prec y^{\downarrow}\) is defined by:
\[ \sum_{i=1}^k x^{\downarrow}_i\leq \sum_{i=1}^k y^{\downarrow}_i,\;\;k=1,\dots,n-1; \qquad \;\sum_{i=1}^n x^{\downarrow}_i= \sum_{i=1}^n y^{\downarrow}_i. \]
The author discusses non-commutative Schur-Horn theorems and an extended majorization for Hermitian matrices.
Let \({\mathcal A}\) be a unital \(*\)-subalgebra of \({\mathcal M}_n({\mathbb C})={\mathbb C}^{n\times n}\) and let \(B\) be an Hermitian matrix. Let \({\mathcal U}_n(B)\) denote the unitary orbit of \(B\) in \({\mathcal M}_n({\mathbb C})\) and let \({\mathcal E}_{\mathcal A}\) denote the trace preserving conditional expectation onto \({\mathcal A}\). In a non-commutative Schur-Horn type theorem, the author gives a spectral characterization of the set
\[ {\mathcal E}_{\mathcal A}({\mathcal U}_n(B))=\left\{{\mathcal E}_{\mathcal A}(U^*BU)\;:\;U\in {\mathcal U}_n({\mathbb C}),\;\text{unitary matrix}\right\}, \]
and a similar result for the contractive orbit of a positive semi-definite matrix \(B\). These results are used to extend the notation of majorization and submajorization between self-adjoint matrices to spectral relations that come together with extended non-commutative Schur-Horn type theorems.

MSC:

15B57 Hermitian, skew-Hermitian, and related matrices
15A24 Matrix equations and identities
15A42 Inequalities involving eigenvalues and eigenvectors
15B48 Positive matrices and their generalizations; cones of matrices
15A15 Determinants, permanents, traces, other special matrix functions

References:

[1] Ando T, Hokkaido University, Research Institute of Applied Electricity pp ii+87– (1982)
[2] Antezana J, Illinois J. Math. 51 pp 537– (2007)
[3] DOI: 10.1016/j.jmaa.2006.08.029 · Zbl 1121.46042 · doi:10.1016/j.jmaa.2006.08.029
[4] DOI: 10.1512/iumj.2007.56.3113 · Zbl 1136.46043 · doi:10.1512/iumj.2007.56.3113
[5] Arveson W, Operator Theory, Operator Algebras, and Applications, Contemp. Math. 414 pp 247– (2006)
[6] DOI: 10.1112/blms/14.1.1 · Zbl 0482.58013 · doi:10.1112/blms/14.1.1
[7] DOI: 10.1016/j.laa.2006.02.027 · Zbl 1132.15015 · doi:10.1016/j.laa.2006.02.027
[8] DOI: 10.1016/S0024-3795(02)00720-6 · Zbl 1031.47007 · doi:10.1016/S0024-3795(02)00720-6
[9] DOI: 10.1016/S0024-3795(03)00386-0 · Zbl 1027.15007 · doi:10.1016/S0024-3795(03)00386-0
[10] DOI: 10.1137/S0895479803438183 · Zbl 1087.65038 · doi:10.1137/S0895479803438183
[11] DOI: 10.1016/S0024-3795(00)00217-2 · Zbl 0979.47016 · doi:10.1016/S0024-3795(00)00217-2
[12] DOI: 10.1016/S0024-3795(00)00218-4 · Zbl 0968.15010 · doi:10.1016/S0024-3795(00)00218-4
[13] DOI: 10.1090/S0273-0979-00-00865-X · Zbl 0994.15021 · doi:10.1090/S0273-0979-00-00865-X
[14] DOI: 10.1007/BF01398933 · Zbl 0503.58017 · doi:10.1007/BF01398933
[15] DOI: 10.2307/2372705 · Zbl 0055.24601 · doi:10.2307/2372705
[16] DOI: 10.1073/pnas.032677199 · Zbl 1013.46049 · doi:10.1073/pnas.032677199
[17] DOI: 10.1073/pnas.032677299 · Zbl 1013.46050 · doi:10.1073/pnas.032677299
[18] DOI: 10.1007/s000290050037 · Zbl 0915.14010 · doi:10.1007/s000290050037
[19] Konstant B, Ann. Scient. Éc. Norm. Sup. 6 pp 413– (1973)
[20] DOI: 10.1016/S0024-3795(98)10169-6 · Zbl 0948.15015 · doi:10.1016/S0024-3795(98)10169-6
[21] DOI: 10.1080/0308108031000069164 · Zbl 1046.15007 · doi:10.1080/0308108031000069164
[22] DOI: 10.1016/j.laa.2005.02.003 · Zbl 1077.15018 · doi:10.1016/j.laa.2005.02.003
[23] Massey P, Adv. Comp. Math.
[24] DOI: 10.1006/jfan.1998.3348 · Zbl 0926.52001 · doi:10.1006/jfan.1998.3348
[25] Schur I, Sitzungsber. Berliner Mat. Ges. 22 pp 9– (1923)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.