×

Simultaneous localization and planning for cooperative air munitions. (English) Zbl 1194.93224

Hirsch, Michael J. (ed.) et al., Advances in cooperative control and optimization. Proceedings of the 7th international conference on cooperative control and optimization, Gainesville, FL, USA, January 31 – February 2, 2007. Berlin: Springer (ISBN 978-3-540-74354-5/pbk). Lecture Notes in Control and Information Sciences 369, 81-93 (2007).
Summary: This chapter considers the cooperative control of aerial munitions during the attack phase of a mission against ground targets. It is assumed that sensor information from multiple munitions is available to refine an estimate of the target location. Based on models of the munition dynamics and sensor performance, munition trajectories are designed that enhance the ability to cooperatively estimate the target location. The problem is posed as an optimal control problem using a cost function based on the variances in the target-location estimate. These variances are computed by fusing the individual munition measurements in a weighted least squares estimate. Numerical solutions are found for several examples both with and without considering limitations on the munitions’ field of view. These examples show large reductions in target-location uncertainty when these trajectories are used compared to other naively designed trajectories. This reduction in uncertainty could enable the attack of targets with greater precision using smaller, cheaper munitions.
For the entire collection see [Zbl 1121.93006].

MSC:

93E20 Optimal stochastic control
93C15 Control/observation systems governed by ordinary differential equations
93A30 Mathematical modelling of systems (MSC2010)
93C95 Application models in control theory
Full Text: DOI

References:

[1] Chandler, P. R.; Pachter, M.; Nygard, K. E.; Swaroop, D.; Murphey, R.; Pardalos, P. M., Cooperative control for target classification, Cooperative Control and Optimization, 1-19 (2002), Dordrecht: Kluwer Academic Publishers, Dordrecht · Zbl 0999.93005 · doi:10.1007/0-306-47536-7_1
[2] Jeffcoat, D. E.; Grundel, D.; Murphey, R.; Pardalos, P. M., Coupled detection rates: An introduction, Theory and Algorithms for Cooperative Systems, World Scientific, New Jersey, 157-167 (2004), Singapore: World Scientific, Singapore · Zbl 1114.90475
[3] Frew, E., Lawrence, D.: Cooperative stand-off tracking of moving targets by a team of autonomous aircraft. In: AIAA Guidance, Navigation, and Control Conference, San Fancisco, California, AIAA-2005-6363 (2005)
[4] Fawcett, J. A., Effect of course maneuvers on bearings-only range estimation, IEEE Transactions on Acoustics, Speech, and Signal Processing, 36, 1193-1199 (1988) · Zbl 0850.93758 · doi:10.1109/29.1648
[5] Hammel, S. E.; Liu, P. T.; Hilliard, E. J.; Gong, K. F., Optimal observor motion for localization with bearing measurements, Computers and Mathematics with Applications, 18, 171-180 (1989) · Zbl 0684.93055 · doi:10.1016/0898-1221(89)90134-X
[6] Logothetis, A., Isaksson, A., Evans, R.J.: Comparison of suboptimal strategies for optimal own-ship maneuvers in bearings-only tracking. In: American Control Conference, Phiadelphia, Pennsylvania (1998)
[7] Passerieux, J. M.; VanCappel, D., Optimal observer maneuver for bearings-only tracking, IEEE Transactions on Aerospace and Electronic Systems, 34, 777-788 (1998) · doi:10.1109/7.705885
[8] Oshman, Y.; Davidson, P., Optimization of observer trajectories for bearings-only target localization, IEEE Transactions on Aerospace and Electronic Systems, 35, 892-902 (1999) · doi:10.1109/7.784059
[9] Frew, E.W., Rock, S.M.: Trajectory generation for constant velocity target motion estimation using monocular vision. In: IEEE International Conference on Robotics & Automation, Taipei, Taiwan (2003)
[10] Watanabe, Y., Johnson, E.N., Calise, A.J.: Vision-based guidance design from sensor trajectory optimization. In: AIAA Guidance, Navigation, and Control Conference, Keystone, Colorado, AIAA-2006-6607 (2006)
[11] Grocholsky, B.: Information-Theoretic Control of Multiple Sensor Platforms. PhD thesis, University of Sydney, Sydney, Australia (2002)
[12] Ousingsawat, J.; Campbell, M. E., Optimal cooperative reconnaissance using multiple vehicles, Journal of Guidance, Control, and Dynamics, 30, 122-132 (2007) · doi:10.2514/1.19147
[13] Dohner, J. L.; Eisler, G. R.; Driessen, B. J.; Hurtado, J., Cooperative control of vehicle swarms for acoustic target localization by energy flows, Journal of Dynamic Systems, Measurement, and Control, 126, 891-895 (2004) · doi:10.1115/1.1852463
[14] Passino, K.; Polycarpou, M.; Jacques, D.; Pachter, M.; Liu, Y.; Yang, Y.; Flint, M.; Baum, M.; Murphey, R.; Pardalos, P. M., Cooperative control for autonomous air vehicles, Cooperative Control and Optimization, 233-271 (2002), Dordrecht: Kluwer Academic Publishers, Dordrecht · doi:10.1007/0-306-47536-7_12
[15] Pachter, M.; Hebert, J.; Murphey, R.; Pardalos, P. M., Cooperative aircraft control for minimum radar exposure, Cooperative Control and Optimization, 199-211 (2002), Dordrecht: Kluwer Academic Publishers, Dordrecht · Zbl 0999.93005 · doi:10.1007/0-306-47536-7_10
[16] Zabarankin, M.; Uryasev, S.; Pardalos, P.; Murphey, R.; Pardalos, P. M., Optimal risk path algorithms, Cooperative Control and Optimization, 273-303 (2002), Dordrecht: Kluwer Academic Publishers, Dordrecht · Zbl 0999.93005 · doi:10.1007/0-306-47536-7_13
[17] Murphey, R.; Uryasev, S.; Zabarankin, M.; Butenko, S.; Murphey, R.; Pardalos, P., Optimal path planning in a threat environment, Recent Developments in Cooperative Control and Optimization, 349-406 (2004), Dordrecht: Kluwer Academic Publishers, Dordrecht · Zbl 1079.93003
[18] Kabamba, P. T.; Meerkov, S. M.; Iii, F. H.Z., Optimal path planning for unmanned combat aerial vehicles to defeat radar tracking, Journal of Guidance, Control, and Dynamics, 29, 279-288 (2006)
[19] Pachter, M.; Chandler, P. R.; Purvis, K. B.; Waun, S. D.; Larson, R. A.; Grundel, D.; Murphey, R.; Pardalos, P. M., Multiple radar phantom tracks from cooperating vehicles using range-delay deception, Theory and Algorithms for Cooperative Systems, 367-390 (2004), Singapore: World Scientific, Singapore · Zbl 1114.90330
[20] Purvis, K. B.; Chandler, P. R.; Pachter, M., Feasible flight paths for cooperative generation of a phantom radar track, Journal of Guidance, Control, and Dynamics, 29, 653-661 (2006)
[21] Stengel, R. F., Optimal Control and Estimation (1986), New York: Dover, New York · Zbl 0854.93001
[22] Crassidis, J. L.; Junkins, J. L., Optimal Estimation of Dynamic Systems (2004), Boca Raton: Chapman and Hall/CRC, Boca Raton · Zbl 1072.93001
[23] Bryson, A.E., Ho, Y.C.: Applied Optimal Control: Optimization, Estimation, and Control. Hemisphere Publishing Corporation, Washington, District of Columbia (1975)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.