×

Ecological consequences of global bifurcations in some food chain models. (English) Zbl 1194.92078

Summary: Food chain models of ordinary differential equations (ode’s) are often used in ecology to gain insight in the dynamics of populations of species, and the interactions of these species with each other and their environment. One powerful analysis technique is bifurcation analysis, focusing on the changes in long-term (asymptotic) behaviour under parameter variation. For the detection of local bifurcations there exists standardised software, but until quite recently most software did not include any capabilities for the detection and continuation of global bifurcations. We focus on the occurrence of global bifurcations in four food chain models, and discuss the implications of their occurrence.
In two stoichiometric models (one piecewise continuous, one smooth) there exists a homoclinic bifurcation, that results in the disappearance of a limit cycle attractor. Instead, a stable positive equilibrium becomes the global attractor. The models are also capable of bistability. In two three-dimensional models a Shil’nikov homoclinic bifurcation functions as the organising centre of chaos, while tangencies of homoclinic cycle-to-cycle connections ‘cut’ the chaotic attractors, which is associated with boundary crises. In one model this leads to extinction of the top predator, while in the other model hysteresis occurs. The types of ecological events occurring because of a global bifurcation will be categorized. Global bifurcations are always catastrophic, leading to the disappearance or merging of attractors. However, there is no 1-on-1 coupling between global bifurcation type and the possible ecological consequences. This only emphasizes the importance of including global bifurcations in the analysis of food chain models.

MSC:

92D40 Ecology
34C60 Qualitative investigation and simulation of ordinary differential equation models
34C23 Bifurcation theory for ordinary differential equations
34C05 Topological structure of integral curves, singular points, limit cycles of ordinary differential equations
37N25 Dynamical systems in biology

Software:

HomCont; AUTO-07P
Full Text: DOI

References:

[1] Guckenheimer, J.; Holmes, P., Nonlinear Oscillations: Dynamical Systems and Bifurcations of Vector Fields (1985), Springer: Springer Berlin
[2] Edelstein-Keshet, L., Mathematical Models in Biology. The Random House/Birkhäuser Mathematics Series (1988), Random House: Random House New Yok · Zbl 0674.92001
[3] Wiggins, S., Global Bifurcations and Chaos: Analytical methods (1988), Springer: Springer New York · Zbl 0661.58001
[4] Wiggins, S., Introduction to Applied Nonlinear Dynamical Systems and Chaos (1990), Springer: Springer New York · Zbl 0701.58001
[5] Kuznetsov, Yu. A., Elements of Applied Bifurcation Theory: Applied Mathematical Sciences, vol. 112 (2004), Springer: Springer New York · Zbl 1082.37002
[6] Bazykin, A. D., Nonlinear Dynamics of Interacting Populations (1998), World Scientific: World Scientific Singapore · Zbl 0605.92015
[7] Kooi, B. W., Numerical bifurcation analysis of ecosystems in a spatially homogeneous environment, Acta Biotheor., 51, 189 (2003)
[8] Gwaltney, C. R.; Luo, W.; Stadtherr, M. A., Computation of equilibrium states and bifurcations using interval analysis: application to food chain models, Ecol. Model., 203, 495 (2007)
[9] Bacelar, F. S.; Dueri, S.; Hernández-García, E.; Zaldívar, J.-M., Joint effects of nutrients and contaminants on the dynamics of a food chain in marine ecosystems, Math. Biosci., 218, 24 (2009) · Zbl 1157.92327
[10] Scheffer, M.; Carpenter, S.; Foley, J. A.; Folke, C.; Walker, B., Catastrophic shifts in ecosystems, Nature, 413, 591 (2001)
[11] Fussman, C. F.; Ellner, S. P.; Shertzer, K. W.; Hairston, N. G., Crossing the Hopf bifurcation in a live predator-prey system, Science, 290, 1358 (2000)
[12] Becks, L.; Hilker, F. M.; Malchow, H.; Jürgens, K.; Arndt, H., Experimental demonstration of chaos in a microbial food web, Nature, 435, 1226 (2005)
[13] Allee, W. C., Animal Aggregations: A Study in General Sociology (1931), University of Chicago: University of Chicago Chicago, IL
[14] van Voorn, G. A.K.; Hemerik, L.; Boer, M. P.; Kooi, B. W., Heteroclinic orbits indicate overexploitation in predator-prey systems with a strong Allee effect, Math. Biosci., 209, 451 (2007) · Zbl 1126.92062
[15] Kooi, B. W.; Bontje, D.; van Voorn, G. A.K.; Kooijman, S. A.L. M., Sublethal toxic effects in a simple aquatic food chain, Ecol. Model., 212, 304 (2008)
[16] Boer, M. P.; Kooi, B. W.; Kooijman, S. A.L. M., Homoclinic and heteroclinic orbits to a cycle in a tri-trophic food chain, J. Math. Biol., 39, 19 (1999) · Zbl 0926.92032
[17] Boer, M. P.; Kooi, B. W.; Kooijman, S. A.L. M., Multiple attractors and boundary crises in a tri-trophic food chain, Math. Biosci., 169, 109 (2001) · Zbl 0981.92032
[18] Doedel, E. J.; Kooi, B. W.; van Voorn, G. A.K.; Kuznetsov, Yu. A., Continuation of connecting orbits in 3D-ODE’s: (II) cycle-to-cycle connections, Int. J. Bifurcation Chaos, 19, 159 (2009) · Zbl 1170.37339
[19] Champneys, A. R.; Kuznetsov, Yu. A., Numerical detection and continuation of codimension-two homoclinic bifurcations, Int. J. Bifurcation Chaos, 4, 785 (1994) · Zbl 0873.34030
[20] Champneys, A. R.; Kuznetsov, Yu. A.; Sandstede, B., A numerical toolbox for homoclinic bifurcation analysis, Int. J. Bifurcation Chaos, 6, 867 (1996) · Zbl 0877.65058
[21] Champneys, A. R.; Lord, G. J., Computation of homoclinic solutions to periodic orbits in a reduced water-wave problem, Physica D, 102, 101 (1997) · Zbl 0888.34040
[22] Doedel, E. J.; Oldeman, B., auto07p: Continuation and Bifurcation Software for Ordinary Differential Equations (2007), Concordia University: Concordia University Montreal, Canada
[23] Dieci, L.; Rebaza, R., Point-to-periodic and periodic-to-periodic connections, BIT Numer. Math., 44, 41 (2004) · Zbl 1052.65113
[24] Dieci, L.; Rebaza, R., Erratum: ‘Point-to-periodic and periodic-to-periodic connections’, BIT Numer. Math., 44, 617 (2004) · Zbl 1075.65145
[25] Doedel, E. J.; Kooi, B. W.; van Voorn, G. A.K.; Kuznetsov, Yu. A., Continuation of connecting orbits in 3D-ODE’s: (I) point-to-cycle connections, Int. J. Bifurcation Chaos, 18, 1889 (2008) · Zbl 1149.34328
[26] Krauskopf, B.; Rieß, T., A Lin’s method approach to finding and continuing heteroclinic connections involving periodic orbits, Nonlinearity, 21, 1655 (2008) · Zbl 1163.34028
[27] Loladze, I.; Kuang, Y.; Elser, J. J., Stoichiometry in producer-grazer systems: linking energy flow with element cycling, Bull. Math. Biol., 62, 1137 (2000) · Zbl 1323.92098
[28] Rosenzweig, M. L.; MacArthur, R. H., Graphical representation and stability conditions of predator-prey interactions, Am. Nat., 97, 209 (1963)
[29] Kuznetsov, Yu. A.; De Feo, O.; Rinaldi, S., Belyakov homoclinic bifurcations in a tri-trophic food chain model, SIAM J. Appl. Math., 62, 462 (2001) · Zbl 1015.34031
[30] Letellier, C.; Aziz-Alaoui, M. A., Analysis of the dynamics of a realistic ecological model, Chaos Soliton Fract., 13, 95 (2002) · Zbl 0977.92029
[31] Holling, C. S., Some characteristics of simple types of predation and parasitism, Can. Entomol., 91, 385 (1959)
[32] Rosenzweig, M. L., Paradox of enrichment: destabilization of exploitation ecosystems in ecological time, Science, 171, 385 (1971)
[33] Gilpin, M. E., Enriched predator-prey systems: theoretical stability, Science, 177, 902 (1972)
[34] O’Neill, R. V.; DeAngelis, D. L.; Pastor, J. J.; Jackson, B. J.; Post, W. M., Multiple nutrient limitations in ecological models, Ecol. Model., 46, 495 (1989)
[35] Kooijman, S. A.L. M., Dynamic Energy Budget Theory for Metabolic Organisation (2010), Cambridge University: Cambridge University Cambridge · Zbl 1162.92008
[36] Klebanoff, A.; Hastings, A., Chaos in three species food chains, J. Math. Biol., 32, 427 (1994) · Zbl 0823.92030
[37] Kuznetsov, Yu. A.; Rinaldi, S., Remarks on food chain dynamics, Math. Biosci., 134, 1 (1996) · Zbl 0844.92025
[38] Grebogi, C.; Ott, E.; Yorke, J. A., Crises, sudden changes in chaotic attractors, and transient chaos, Physica D, 7, 181 (1983) · Zbl 0561.58029
[39] Ott, E., Chaos in Dynamical Systems (1993), Cambridge University: Cambridge University Cambridge · Zbl 0792.58014
[40] Kooi, B. W.; Boer, M. P., Chaotic behaviour of a predator-prey system in the chemostat, Dyn. Cont. Discr. Imp. Syst., 10, 259 (2003) · Zbl 1146.34319
[41] McCann, K.; Yodzis, P., Nonlinear dynamics and population disappearances, Am. Nat., 144, 873 (1994)
[42] Antonovsky, M. Ya.; Fleming, R. A.; Kuznetsov, Yu. A.; Clark, W. C., Forest-pest interaction dynamics: the simplest mathematical models, Theor. Pop. Biol., 37, 343 (1990) · Zbl 0699.92023
[43] Kooijman, S. A.L. M.; Grasman, J.; Kooi, B. W., A new class of non-linear stochastic population models with mass conservation, Math. Biosci., 210, 378 (2007) · Zbl 1134.92038
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.